دورية أكاديمية

Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes.

التفاصيل البيبلوغرافية
العنوان: Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes.
المؤلفون: Lv J; College of Information Science and Engineering, Northeastern University, Shenyang, 110004, China.; School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China., Wu Y; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China. yingjie.wu@zju.edu.cn., Liu J; Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China.; Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia., Gong Y; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China., Si G; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, 3168, VIC, Australia., Hu G; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore., Zhang Q; School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China., Zhang Y; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China., Tang JX; Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China.; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China., Fuhrer MS; ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia.; School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia., Chen H; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China., Maier SA; ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia.; School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia.; Department of Physics, Imperial College London, London, SW7 2AZ, UK., Qiu CW; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore. chengwei.qiu@nus.edu.sg., Ou Q; Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China. qdou@must.edu.mo.; Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia. qdou@must.edu.mo.; ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia. qdou@must.edu.mo.
المصدر: Nature communications [Nat Commun] 2023 Jul 01; Vol. 14 (1), pp. 3894. Date of Electronic Publication: 2023 Jul 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Phonons* , Photons*, Energy Transfer ; Motion ; Physics
مستخلص: Photonic crystals (PhCs) are a kind of artificial structures that can mold the flow of light at will. Polaritonic crystals (PoCs) made from polaritonic media offer a promising route to controlling nano-light at the subwavelength scale. Conventional bulk PhCs and recent van der Waals PoCs mainly show highly symmetric excitation of Bloch modes that closely rely on lattice orders. Here, we experimentally demonstrate a type of hyperbolic PoCs with configurable and low-symmetry deep-subwavelength Bloch modes that are robust against lattice rearrangement in certain directions. This is achieved by periodically perforating a natural crystal α-MoO 3 that hosts in-plane hyperbolic phonon polaritons. The mode excitation and symmetry are controlled by the momentum matching between reciprocal lattice vectors and hyperbolic dispersions. We show that the Bloch modes and Bragg resonances of hyperbolic PoCs can be tuned through lattice scales and orientations while exhibiting robust properties immune to lattice rearrangement in the hyperbolic forbidden directions. Our findings provide insights into the physics of hyperbolic PoCs and expand the categories of PhCs, with potential applications in waveguiding, energy transfer, biosensing and quantum nano-optics.
(© 2023. Crown.)
References: Science. 2021 Oct 08;374(6564):225-227. (PMID: 34618590)
Nat Commun. 2020 Mar 3;11(1):1158. (PMID: 32127535)
Sci Adv. 2021 Apr 2;7(14):. (PMID: 33811076)
Nature. 2012 Jul 5;487(7405):77-81. (PMID: 22722861)
Nat Mater. 2017 Feb;16(2):182-194. (PMID: 27893724)
Nat Commun. 2019 Oct 21;10(1):4780. (PMID: 31636265)
Nat Commun. 2018 May 2;9(1):1762. (PMID: 29720587)
ACS Nano. 2021 May 25;15(5):9134-9142. (PMID: 33929186)
Nat Commun. 2020 Nov 30;11(1):6086. (PMID: 33257664)
Science. 2011 Jun 10;332(6035):1291-4. (PMID: 21659598)
Science. 2016 Oct 14;354(6309):. (PMID: 27738142)
Nat Commun. 2021 Jun 22;12(1):3824. (PMID: 34158483)
Nature. 2021 Aug;596(7872):362-366. (PMID: 34408329)
Nat Commun. 2019 Jan 3;10(1):42. (PMID: 30604741)
Science. 2018 Feb 23;359(6378):892-896. (PMID: 29472478)
Nano Lett. 2021 Sep 8;21(17):7109-7115. (PMID: 34414765)
Nature. 2022 May;605(7908):63-68. (PMID: 35508778)
Nano Lett. 2021 Apr 14;21(7):3112-3119. (PMID: 33764791)
Nat Commun. 2014 Oct 17;5:5221. (PMID: 25323633)
Nature. 2022 Feb;602(7898):595-600. (PMID: 35197618)
Nat Mater. 2015 Apr;14(4):421-5. (PMID: 25532073)
Nature. 2020 Jun;582(7811):209-213. (PMID: 32528096)
Nano Lett. 2022 May 25;22(10):4260-4268. (PMID: 35442697)
Nature. 2021 Sep;597(7875):187-195. (PMID: 34497390)
Nat Commun. 2023 May 11;14(1):2716. (PMID: 37169788)
Nature. 2018 Oct;562(7728):557-562. (PMID: 30356185)
Nat Commun. 2020 May 27;11(1):2646. (PMID: 32461577)
Nano Lett. 2010 Jul 14;10(7):2721-6. (PMID: 20586409)
Sci Adv. 2021 Oct 08;7(41):eabj0127. (PMID: 34623915)
Sci Adv. 2022 Jul 29;8(30):eabn9774. (PMID: 35905184)
Sci Adv. 2019 May 24;5(5):eaav8690. (PMID: 31139747)
Science. 2014 Mar 7;343(6175):1125-9. (PMID: 24604197)
Nat Nanotechnol. 2022 Sep;17(9):940-946. (PMID: 35982316)
Nat Commun. 2022 Jun 28;13(1):3719. (PMID: 35764651)
Adv Mater. 2015 Oct 21;27(39):5974-80. (PMID: 26315672)
Science. 2018 Dec 7;362(6419):1153-1156. (PMID: 30523109)
Nature. 2012 Jul 5;487(7405):82-5. (PMID: 22722866)
Sci Adv. 2021 May 7;7(19):. (PMID: 33962941)
Adv Mater. 2020 Jul;32(29):e1908176. (PMID: 32495483)
Nat Nanotechnol. 2015 Aug;10(8):682-6. (PMID: 26098228)
تواريخ الأحداث: Date Created: 20230701 Date Completed: 20230703 Latest Revision: 20230704
رمز التحديث: 20230704
مُعرف محوري في PubMed: PMC10314936
DOI: 10.1038/s41467-023-39543-w
PMID: 37393303
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-023-39543-w