دورية أكاديمية

A trade-off between proliferation and defense in the fungal pathogen Cryptococcus at alkaline pH is controlled by the transcription factor GAT201.

التفاصيل البيبلوغرافية
العنوان: A trade-off between proliferation and defense in the fungal pathogen Cryptococcus at alkaline pH is controlled by the transcription factor GAT201.
المؤلفون: Hughes ES; Institute for Cell Biology, and Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh., Tuck LR; Institute for Cell Biology, and Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh., He Z; Institute for Cell Biology, and Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh., Ballou ER; MRC Centre for Medical Mycology, The University of Exeter., Wallace EWJ; Institute for Cell Biology, and Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh.
المصدر: BioRxiv : the preprint server for biology [bioRxiv] 2024 Jun 11. Date of Electronic Publication: 2024 Jun 11.
نوع المنشور: Journal Article; Preprint
اللغة: English
بيانات الدورية: Country of Publication: United States NLM ID: 101680187 Publication Model: Electronic Cited Medium: Internet ISSN: 2692-8205 (Electronic) Linking ISSN: 26928205 NLM ISO Abbreviation: bioRxiv Subsets: PubMed not MEDLINE
مستخلص: Cryptococcus is a fungal pathogen whose virulence relies on proliferation in and dissemination to host sites, and on synthesis of a defensive yet metabolically costly polysaccharide capsule. Regulatory pathways required for Cryptococcus virulence include a GATA-like transcription factor, Gat201, that regulates Cryptococcal virulence in both capsule-dependent and capsule-independent ways. Here we show that Gat201 is part of a negative regulatory pathway that limits fungal survival at alkaline pH. RNA-seq analysis found strong induction of GAT201 expression within minutes of transfer to RPMI media at alkaline pH. Microscopy, growth curves, and colony forming unit assays show that in RPMI at alkaline pH wild-type Cryptococcus neoformans yeast cells produce capsule but do not bud or maintain viability, while gat201Δ cells make buds and maintain viability, yet fail to produce capsule. GAT201 is required for transcriptional upregulation of a specific set of genes, the majority of which are direct Gat201 targets. Evolutionary analysis shows that Gat201 is in a subfamily of GATA-like transcription factors that is conserved within pathogenic fungi but absent in model yeasts. This work identifies the Gat201 pathway as controlling a trade-off between proliferation and production of defensive capsule. The assays established here will allow characterisation of the mechanisms of action of the Gat201 pathway. Together, our findings urge improved understanding of the regulation of proliferation as a driver of fungal pathogenesis.
References: Int J Food Microbiol. 1991 Feb;12(2-3):141-9. (PMID: 2049282)
Microbiol Spectr. 2022 Dec 21;10(6):e0286622. (PMID: 36287085)
Curr Opin Microbiol. 2003 Aug;6(4):332-7. (PMID: 12941400)
Cell. 2008 Oct 3;135(1):174-88. (PMID: 18854164)
J Exp Med. 2021 Apr 5;218(4):. (PMID: 33533914)
Fungal Genet Biol. 2019 Oct;131:103241. (PMID: 31220607)
G3 (Bethesda). 2021 Jun 17;11(6):. (PMID: 33792687)
J Basic Microbiol. 2016 Nov;56(11):1222-1233. (PMID: 27545298)
Mol Microbiol. 2012 Aug;85(3):557-73. (PMID: 22757963)
Genome Res. 2021 Aug;31(8):1498-1511. (PMID: 34183452)
Bioinformatics. 2014 Apr 1;30(7):923-30. (PMID: 24227677)
J Fungi (Basel). 2018 Mar 20;4(1):. (PMID: 30152809)
PLoS Biol. 2020 Nov 2;18(11):e3000862. (PMID: 33137085)
Genome Res. 2002 Sep;12(9):1386-400. (PMID: 12213776)
PLoS Pathog. 2012;8(4):e1002663. (PMID: 22536157)
Curr Opin Microbiol. 2017 Dec;40:88-94. (PMID: 29154043)
Front Cell Infect Microbiol. 2019 Jun 18;9:212. (PMID: 31275865)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
mBio. 2013 Jan 15;4(1):. (PMID: 23322637)
Genetics. 2022 Jan 4;220(1):. (PMID: 34791226)
Clin Microbiol Rev. 2012 Jul;25(3):387-408. (PMID: 22763631)
Genetics. 2014 May;197(1):159-73. (PMID: 24532783)
FEMS Yeast Res. 2006 Jun;6(4):463-8. (PMID: 16696642)
Nucleic Acids Res. 2020 Mar 18;48(5):2312-2331. (PMID: 32020195)
Nat Methods. 2015 Apr;12(4):323-5. (PMID: 25730492)
mSphere. 2017 Jan 25;2(1):. (PMID: 28144629)
Mol Microbiol. 2018 May;108(4):410-423. (PMID: 29485686)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354. (PMID: 33156333)
Eukaryot Cell. 2010 May;9(5):774-83. (PMID: 20348388)
Nat Rev Microbiol. 2011 Mar;9(3):193-203. (PMID: 21326274)
Mol Microbiol. 2001 Jul;41(2):299-309. (PMID: 11489119)
Front Biosci. 1997 Nov 01;2:e99-107. (PMID: 9342305)
J Clin Invest. 1997 Sep 15;100(6):1640-6. (PMID: 9294133)
Nat Biotechnol. 2019 Aug;37(8):907-915. (PMID: 31375807)
mBio. 2014 Jun 17;5(3):e00945-14. (PMID: 24939886)
PLoS Genet. 2015 Apr 10;11(4):e1005159. (PMID: 25859664)
Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120. (PMID: 20197501)
EMBO J. 2009 Apr 22;28(8):1029-42. (PMID: 19262566)
Cell Host Microbe. 2011 Mar 17;9(3):243-251. (PMID: 21402362)
Commun Biol. 2019 Apr 26;2:144. (PMID: 31044169)
Nat Commun. 2015 Apr 07;6:6757. (PMID: 25849373)
Infect Immun. 2009 Aug;77(8):3491-500. (PMID: 19451235)
Curr Opin Microbiol. 2000 Aug;3(4):354-8. (PMID: 10972493)
Infect Immun. 2003 Sep;71(9):4831-41. (PMID: 12933823)
Nihon Ishinkin Gakkai Zasshi. 2007;48(4):147-52. (PMID: 17975529)
Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444. (PMID: 34791371)
Nucleic Acids Res. 2022 Jan 7;50(D1):D20-D26. (PMID: 34850941)
Mycobiology. 2011 Dec;39(4):249-56. (PMID: 22783112)
mBio. 2016 Apr 19;7(2):e00313-16. (PMID: 27094327)
Eukaryot Cell. 2012 Feb;11(2):109-18. (PMID: 22140231)
Lancet Infect Dis. 2022 Dec;22(12):1748-1755. (PMID: 36049486)
Bioinformatics. 2016 Oct 1;32(19):3047-8. (PMID: 27312411)
Curr Opin Microbiol. 2010 Aug;13(4):437-42. (PMID: 20570552)
Eukaryot Cell. 2007 Jun;6(6):949-59. (PMID: 17449657)
PLoS One. 2018 Jan 2;13(1):e0189892. (PMID: 29293531)
PLoS One. 2011 May 11;6(5):e19688. (PMID: 21589919)
Eukaryot Cell. 2006 Jan;5(1):103-11. (PMID: 16400172)
Mol Microbiol. 2004 Mar;51(5):1447-58. (PMID: 14982637)
Mol Biol Evol. 2020 May 1;37(5):1530-1534. (PMID: 32011700)
PLoS Genet. 2014 Apr 17;10(4):e1004261. (PMID: 24743168)
Eukaryot Cell. 2003 Aug;2(4):655-63. (PMID: 12912884)
J Bacteriol. 1961 Sep;82:430-5. (PMID: 13716208)
Nucleic Acids Res. 2018 Jan 4;46(D1):D816-D822. (PMID: 29087490)
J Infect Dis. 1972 Apr;125(4):412-5. (PMID: 4553084)
J Mol Evol. 2000 Feb;50(2):103-15. (PMID: 10684344)
Nat Rev Microbiol. 2016 Feb;14(2):106-17. (PMID: 26685750)
mBio. 2020 Jun 16;11(3):. (PMID: 32546619)
Lancet. 2004 May 29;363(9423):1764-7. (PMID: 15172774)
Am J Pathol. 1980 Oct;101(1):177-94. (PMID: 7004196)
PLoS Pathog. 2019 Jun 27;15(6):e1007777. (PMID: 31247052)
Clin Infect Dis. 2009 Sep 1;49(5):702-9. (PMID: 19613840)
Eukaryot Cell. 2009 Mar;8(3):315-26. (PMID: 19151325)
Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426. (PMID: 30407594)
Mol Microbiol. 1998 Aug;29(3):719-29. (PMID: 9723912)
Cell Host Microbe. 2016 Jun 8;19(6):849-64. (PMID: 27212659)
PLoS One. 2017 Feb 17;12(2):e0171695. (PMID: 28212396)
Infect Immun. 2003 Nov;71(11):6155-64. (PMID: 14573631)
PLoS Pathog. 2010 Feb 19;6(2):e1000776. (PMID: 20174553)
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. (PMID: 15034147)
AIDS. 2009 Feb 20;23(4):525-30. (PMID: 19182676)
Infect Immun. 2009 Oct;77(10):4345-55. (PMID: 19620339)
Med Mycol. 2020 Aug 1;58(6):744-755. (PMID: 31912151)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; R01 AI100272 United States AI NIAID NIH HHS
تواريخ الأحداث: Date Created: 20230703 Latest Revision: 20240628
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10312749
DOI: 10.1101/2023.06.14.543486
PMID: 37398450
قاعدة البيانات: MEDLINE
الوصف
تدمد:2692-8205
DOI:10.1101/2023.06.14.543486