دورية أكاديمية

Proapoptotic effects of halogenated bis-phenylthiourea derivatives in cancer cells.

التفاصيل البيبلوغرافية
العنوان: Proapoptotic effects of halogenated bis-phenylthiourea derivatives in cancer cells.
المؤلفون: Strzyga-Łach P; Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland., Chrzanowska A; Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland., Kiernozek-Kalińska E; Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland., Żyżyńska-Granica B; Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland., Podsadni K; Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland., Podsadni P; Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland., Bielenica A; Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland.
المصدر: Archiv der Pharmazie [Arch Pharm (Weinheim)] 2023 Sep; Vol. 356 (9), pp. e2300105. Date of Electronic Publication: 2023 Jul 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag GmbH & Co. KGaA Country of Publication: Germany NLM ID: 0330167 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4184 (Electronic) Linking ISSN: 03656233 NLM ISO Abbreviation: Arch Pharm (Weinheim) Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim Germany : Wiley-VCH Verlag GmbH & Co. KGaA
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: Antineoplastic Agents*/pharmacology , Neoplasms*, Caspase 3/metabolism ; Caspase 7/metabolism ; Structure-Activity Relationship ; Phenylthiourea/pharmacology ; Reactive Oxygen Species/metabolism ; Interleukin-6/pharmacology ; Cell Line, Tumor ; Apoptosis ; Cell Proliferation
مستخلص: New halogenated thiourea derivatives were synthesized via the reaction of substituted phenylisothiocyanates with aromatic amines. Their cytotoxic activity was examined in in vitro studies against solid tumors (SW480, SW620, PC3), a hematological malignance (K-562), and normal keratinocytes (HaCaT). Most of the compounds were more effective against SW480 (1a, 3a, 3b, 5j), K-562 (2b, 3a, 4a), or PC3 (5d) cells than cisplatin, with favorable selectivity. Their anticancer mechanisms were studied by Annexin V-fluorescein-5-isothiocyanate apoptosis, caspase-3/caspase-7 assessment, cell cycle analysis, interleukin-6 (IL-6) release inhibition, and reactive oxygen species (ROS) generation assay. Thioureas 1a, 2b, 3a, and 4a were the most potent activators of early apoptosis in K-562 cells, and substances 1a, 3b, 5j triggered late-apoptosis or necrosis in SW480 cells. This proapoptotic effect was proved by the significant increase of caspase-3/caspase-7 activation. Cell cycle analysis revealed that derivatives 1a, 3a, 5j increased the number of SW480 and K-562 cells in the sub-G1 and/or G0/G1 phases, and one evoked cycle arrest at the G2 phase. The most potent thioureas inhibited IL-6 cytokine secretion from PC3 cells and both colon cancer cell lines. Apoptosis-inducing compounds also increased ROS production in all tumor cell cultures, which may enhance their anticancer properties.
(© 2023 Deutsche Pharmazeutische Gesellschaft.)
References: J. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros, A. Znaor, I. Soerjomataram, F. Bray, Global Cancer Observatory: Cancer Today, International Agency for Research on Cancer, Lyon 2020, https://gco.iarc.fr/today (accessed: February 2021).
G. Wu, Z. Zhu, J. Li, X. Luo, W. Zhu, G. Liao, J. Xia, W. Zhang, W. Pan, T. Li, S. Wu, Bioorg. Med. Chem. 2022, 59, 116676. https://doi.org/10.1016/j.bmc.2022.116676.
S. D. Calixto, T. L. B. V. Simão, M. V. Palmeira-Mello, G. M. Viana, P. W. M. C. Assumpção, M. G. Rezende, C. C. do Espirito Santo, de V. Oliveira Mussi, C. R. Rodrigues, E. Lasunskaia, de A. M. T. Souza, L. M. Cabral, M. F. Muzitano, Bioorg. Med. Chem. 2022, 53, 116506. https://doi.org/10.1016/j.bmc.2021.116506.
S. Mazzotta, T. Cebrero-Cangueiro, L. Frattaruolo, M. Vega-Holm, M. Carretero-Ledesma, J. Sánchez-Céspedes, A. R. Cappello, F. Aiello, J. Pachón, J. M. Vega-Pérez, F. Iglesias-Guerra, M. E. Pachón-Ibáñez, Bioorg. Med. Chem. Lett. 2020, 30(18), 127411. https://doi.org/10.1016/j.bmcl.2020.127411.
A. Bielenica, J. Stefańska, K. Stępień, A. Napiórkowska, E. Augustynowicz-Kopeć, G. Sanna, S. Madeddu, S. Boi, G. Giliberti, M. Wrzosek, M. Struga, Eur. J. Med. Chem. 2015, 101, 111. https://doi.org/10.1016/j.ejmech.2015.06.027.
A. Bielenica, K. Stępień, A. Napiórkowska, E. Augustynowicz-Kopeć, S. Krukowski, M. Włodarczyk, M. Struga, Chem. Biol. Drug Des. 2016, 87(6), 905. https://doi.org/10.1111/cbdd.12723.
A. Bielenica, G. Sanna, S. Madeddu, M. Struga, M. Jóźwiak, A. E. Kozioł, A. Sawczenko, I. B. Materek, A. Serra, G. Giliberti, Chem. Biol. Drug Des. 2017, 90(5), 883. https://doi.org/10.1111/cbdd.13009.
H. Kondo, T. Koshizuka, R. Majima, K. Takahashi, K. Ishioka, T. Suzutani, N. Inoue, Antiviral Res. 2021, 196, 105207. https://doi.org/10.1016/j.antiviral.2021.105207.
N. Siddiqui, M. S. Alam, M. Sahu, M. J. Naim, M. S. Yar, O. Alam, Bioorg. Chem. 2017, 71, 230. https://doi.org/10.1016/j.bioorg.2017.02.009.
M. Matias, G. Campos, S. Silvestre, A. Falcão, G. Alves, Eur. J. Pharm. Sci. 2017, 102, 264. https://doi.org/10.1016/j.ejps.2017.03.014.
R. A. Wagdy, P. J. Chen, M. M. Hamed, S. S. Darwish, S. H. Chen, A. H. Abadi, M. Abdel-Halim, T. L. Hwang, M. Engel, Bioorg. Chem. 2022, 127, 105977. https://doi.org/10.1016/j.bioorg.2022.105977.
U. Kollu, V. K. R. Avula, S. Vallela, V. R. Pasupuleti, G. V. Zyryanov, Y. S. Neelam, N. R. Chamarthi, Bioorg. Chem. 2021, 111, 104837. https://doi.org/10.1016/j.bioorg.2021.104837.
A. Chrzanowska, A. Drzewiecka-Antonik, K. Dobrzyńska, J. Stefańska, P. Pietrzyk, M. Struga, A. Bielenica, Int. J. Mol. Sci. 2021, 22(21), 11415. https://doi.org/10.3390/ijms222111415.
M. S. Ricci, W. X. Zong, Oncologist 2006, 11(4), 342. https://doi.org/10.1634/theoncologist.11-4-342.
R. M. Sbenati, S. O. Zaraei, M. I. El-Gamal, H. S. Anbar, H. Tarazi, M. M. Zoghbor, N. A. Mohamood, M. M. Khakpour, D. M. Zaher, H. A. Omar, N. N. Alach, M. K. Shehata, R. El-Gamal, Eur. J. Med. Chem. 2021, 210, 113081. https://doi.org/10.1016/j.ejmech.2020.113081.
B. Yu, Y. Liu, X. Peng, S. Hua, G. Zhou, K. Yan, Y. Liu, Metallomics 2020, 12(1), 104. https://doi.org/10.1039/c9mt00232d.
G. J. V. Pereira, M. T. Tavares, R. A. Azevedo, B. B. Martins, M. R. Cunha, R. Bhardwaj, Y. Cury, V. O. Zambelli, E. G. Barbosa, M. A. Hediger, R. Parise-Filho, Bioorg. Med. Chem. 2019, 27(13), 2893. https://doi.org/10.1016/j.bmc.2019.05.020.
J. Johnson, P. Rychahou, V. M. Sviripa, H. L. Weiss, C. Liu, D. S. Watt, B. M. Evers, PLoS One 2019, 14(3), e0209392. https://doi.org/10.1371/journal.pone.0209392.
A. Türe, M. Ergül, M. Ergül, A. Altun, İ. Küçükgüzel, Mol. Divers. 2021, 25(2), 1025. https://doi.org/10.1007/s11030-020-10087-1.
S. Y. Abbas, R. A. K. Al-Harbi, M. A. M. Sh El-Sharief, Eur. J. Med. Chem. 2020, 198, 112363. https://doi.org/10.1016/j.ejmech.2020.112363.
R. A. K. Al-Harbi, M. A. M. S. El-Sharief, S. Y. Abbas, Bioorg. Chem. 2019, 90, 103088. https://doi.org/10.1016/j.bioorg.2019.103088.
R. Tokala, S. Bale, I. P. Janrao, A. Vennela, N. P. Kumar, K. R. Senwar, C. Godugu, N. Shankaraiah, Bioorg. Med. Chem. Lett. 2018, 28(10), 1919. https://doi.org/10.1016/j.bmcl.2018.03.074.
F. A. F. Ragab, S. A. Abdel-Aziz, M. Kamel, A. M. A. Ouf, H. A. Allam, Bioorg. Chem. 2019, 93, 103323. https://doi.org/10.1016/j.bioorg.2019.103323.
S. A. Pérez, de C. Haro, C. Vicente, A. Donaire, A. Zamora, J. Zajac, H. Kostrhunova, V. Brabec, D. Bautista, J. Ruiz, ACS Chem. Biol. 2017, 12(6), 1524. https://doi.org/10.1021/acschembio.7b00090.
J. C. Shing, J. W. Choi, R. Chapman, M. A. Schroeder, J. N. Sarkaria, A. Fauq, R. J. Bram, Cancer Biol. Ther. 2014, 15(7), 895. https://doi.org/10.4161/cbt.28881.
B. Dai, T. Yang, X. Shi, N. Ma, Y. Kang, J. Zhang, Y. Zhang, Phytomedicine 2018, 51, 48. https://doi.org/10.1016/j.phymed.2018.06.028.
R. S. Viswas, S. Pundir, H. Lee, J. Enzyme Inhib. Med. Chem. 2019, 34(1), 620. https://doi.org/10.1080/14756366.2019.1571055.
S. A. Elseginy, R. Hamdy, V. Menon, A. M. Almehdi, R. El-Awady, S. S. M. Soliman, Bioorg. Med. Chem. Lett. 2020, 30(24), 127658. https://doi.org/10.1016/j.bmcl.2020.127658.
S. Mowafy, A. Galanis, Z. M. Doctor, R. M. Paranal, D. S. Lasheen, N. A. Farag, P. A. Jänne, K. A. M. Abouzid, Bioorg. Med. Chem. 2016, 24(16), 3501. https://doi.org/10.1016/j.bmc.2016.05.063.
M. M. Hamed, S. S. Darwish, J. Herrmann, A. H. Abadi, M. Engel, J. Med. Chem. 2017, 60(7), 2853. https://doi.org/10.1021/acs.jmedchem.6b01774.
Y. Zhang, X. Meng, H. Tang, M. Cheng, F. Yang, W. Xu, J. Enzyme Inhib. Med. Chem. 2020, 35(1), 344. https://doi.org/10.1080/14756366.2019.1702653.
L. Conesa-Milián, E. Falomir, J. Murga, M. Carda, J. A. Marco, Eur. J. Med. Chem. 2019, 162, 781. https://doi.org/10.1016/j.ejmech.2018.11.023.
Y. Sun, Y. Shan, C. Li, R. Si, X. Pan, B. Wang, J. Zhang, Eur. J. Med. Chem. 2017, 141, 373. https://doi.org/10.1016/j.ejmech.2017.10.008.
J. Janockova, J. Korabecny, J. Plsikova, K. Babkova, E. Konkolova, D. Kucerova, J. Vargova, J. Koval, R. Jendzelovsky, P. Fedorocko, J. Kasparkova, V. Brabec, J. Rosocha, O. Soukup, S. Hamulakova, K. Kuca, M. Kozurkova, J. Enzyme Inhib. Med. Chem. 2019, 34(1), 877. https://doi.org/10.1080/14756366.2019.1593159.
İ. Koca, A. Özgür, M. Er, M. Gümüş, K. Açikalin Coşkun, Y. Tutar, Eur. J. Med. Chem. 2016, 122, 280. https://doi.org/10.1016/j.ejmech.2016.06.032.
L. Y. Ma, Y. C. Zheng, S. Q. Wang, B. Wang, Z. R. Wang, L. P. Pang, M. Zhang, J. W. Wang, L. Ding, J. Li, C. Wang, B. Hu, Y. Liu, X. D. Zhang, J. J. Wang, Z. J. Wang, W. Zhao, H. M. Liu, J. Med. Chem. 2015, 58(4), 1705. https://doi.org/10.1021/acs.jmedchem.5b00037.
M. M. Ghorab, M. S. Alsaid, M. S. A. El-Gaby, N. A. Safwat, M. M. Elaasser, A. M. Soliman, Eur. J. Med. Chem. 2016, 124, 299. https://doi.org/10.1016/j.ejmech.2016.08.060.
S. I. Farooqi, N. Arshad, F. Perveen, P. A. Channar, A. Saeed, A. Javed, Arch. Biochem. Biophys. 2019, 666, 83. https://doi.org/10.1016/j.abb.2019.03.021.
Erratum in: Arch. Biochem Biophys. 2020, 686, 10826.
M. Kožurková, D. Sabolová, P. Kristian, J. Appl. Toxicol. 2017, 37(10), 1132. https://doi.org/10.1002/jat.3464.
G. Wang, S. Sun, H. Guo, Eur. J. Med. Chem. 2022, 229, 113999. https://doi.org/10.1016/j.ejmech.2021.113999.
S. Issa, A. Prandina, N. Bedel, P. Rongved, S. Yous, M. Le Borgne, Z. Bouaziz, J. Enzyme Inhib. Med. Chem. 2019, 34(1), 1321. https://doi.org/10.1080/14756366.2019.1640692.
M. Itoigawa, Y. Kashiwada, C. Ito, H. Furukawa, Y. Tachibana, K. F. Bastow, K. H. Lee, J. Nat. Prod. 2000, 63(7), 893. https://doi.org/10.1021/np000020e.
P. Strzyga-Łach, A. Chrzanowska, K. Podsadni, A. Bielenica, Pharmaceuticals 2021, 14(11), 1097. https://doi.org/10.3390/ph14111097.
A. Bielenica, G. Sanna, S. Madeddu, G. Giliberti, J. Stefańska, A. Kozioł, O. Savchenko, P. Strzyga-Łach, A. Chrzanowska, G. Kubiak-Tomaszewska, M. Struga, Molecules 2018, 23(10), 2428. https://doi.org/10.3390/molecules23102428.
C. R. W. Guimarães, A. M. Mathiowetz, M. Shalaeva, G. Goetz, S. Liras, J. Chem. Inf. Model. 2012, 52(4), 882. https://doi.org/10.1021/ci300010y.
J. Liu, Y. Peng, W. Wei, Trends Cell Biol. 2022, 32(1), 30. https://doi.org/10.1016/j.tcb.2021.07.001.
D. C. Chonov, M. M. K. Ignatova, J. R. Ananiev, M. V. Gulubova, Open Access Maced. J. Med. Sci. 2019, 7(14), 2391. https://doi.org/10.3889/oamjms.2019.589.
K.-Y. Yeh, Y.-Y. Li, L.-L. Hsieh, C.-H. Lu, W.-C. Chou, C.-C. Liaw, R.-P. Tang, S.-K. Liao, Jpn. J. Clin. Oncol. 2010, 40(6), 580. https://doi.org/10.1093/jjco/hyq010.
A. L. Serrano, B. Baeza-Raja, E. Perdiguero, M. Jardí, P. Muñoz-Cánoves, Cell Metab. 2008, 7(1), 33. https://doi.org/10.1016/j.cmet.2007.
K. Hänel, C. Cornelissen, B. Lüscher, J. Baron, Int. J. Mol. Sci. 2013, 14(4), 6720. https://doi.org/10.3390/ijms14046720.
B. Perillo, M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli, G. Galasso, G. Castoria, A. Migliaccio, Exp. Mol. Med. 2020, 52(2), 192-203. https://doi.org/10.1038/s12276-020-0384-2.
معلومات مُعتمدة: Warszawski Uniwersytet Medyczny
فهرسة مساهمة: Keywords: apoptosis; caspase-3/caspase-7 activation; cell cycle analysis; cytotoxic activity; thiourea derivatives
المشرفين على المادة: EC 3.4.22.- (Caspase 3)
EC 3.4.22.- (Caspase 7)
6F82C6Q54C (Phenylthiourea)
0 (Reactive Oxygen Species)
0 (Interleukin-6)
0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20230704 Date Completed: 20230904 Latest Revision: 20230904
رمز التحديث: 20231215
DOI: 10.1002/ardp.202300105
PMID: 37401845
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4184
DOI:10.1002/ardp.202300105