دورية أكاديمية

Surgery for spina bifida occulta: spinal lipoma and tethered spinal cord.

التفاصيل البيبلوغرافية
العنوان: Surgery for spina bifida occulta: spinal lipoma and tethered spinal cord.
المؤلفون: Morota N; Department of Neurosurgery, Kitasato Universicy Hospital, 1-15-1 Kitasato, Minami-Ku, Sagamihara, 252-0375, Japan. nobu.m01@gmail.com., Sakamoto H; Department of Pediatric Neurosurgery, Osaka City General Hospital, 2-13-22 Miyakojima-Hondori, Miyakojima-Ku, Osaka, 534-0021, Japan.; Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan.
المصدر: Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery [Childs Nerv Syst] 2023 Oct; Vol. 39 (10), pp. 2847-2864. Date of Electronic Publication: 2023 Jul 08.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8503227 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1433-0350 (Electronic) Linking ISSN: 02567040 NLM ISO Abbreviation: Childs Nerv Syst Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer International, c1985-
مواضيع طبية MeSH: Spina Bifida Occulta*/complications , Spina Bifida Occulta*/diagnostic imaging , Spina Bifida Occulta*/surgery , Lipoma*/diagnostic imaging , Lipoma*/surgery , Lipoma*/complications , Spinal Cord Neoplasms*/diagnostic imaging , Spinal Cord Neoplasms*/surgery, Humans ; Neurosurgical Procedures/methods ; Radiography ; Spinal Cord/surgery
مستخلص: The technical evolution of the surgery for spina bifida occulta (SBO) over the course of a half-century was reviewed with special foci placed on the spinal lipoma and tethered spinal cord. Looking back through history, SBO had been included in spina bifida (SB). Since the first surgery for spinal lipoma in the mid-nineteenth century, SBO has come to be recognized as an independent pathology in the early twentieth century. A half-century ago, the only option available for SB diagnosis was the plain X-ray, and pioneers of the time persevered in the field of surgery. The classification of spinal lipoma was first described in the early 1970s, and the concept of tethered spinal cord (TSC) was proposed in 1976. Surgical management of spinal lipoma with partial resection was the most widely practiced approach and was indicated only for symptomatic patients. After understanding TSC and tethered cord syndrome (TCS), more aggressive approaches became preferred. A PubMed search suggested that there was a dramatic increase of publications on the topic beginning around 1980. There have been immense academic achievements and technical evolutions since then. From the authors' viewpoint, landmark achievements in this field are listed as follows: (1) establishment of the concept of TSC and the understanding of TCS; (2) unraveling the process of secondary and junctional neurulation; (3) introduction of modern intraoperative neurophysiological mapping and monitoring (IONM) for surgery of spinal lipomas, especially the introduction of bulbocavernosus reflex (BCR) monitoring; (4) introduction of radical resection as a surgical technique; and (5) proposal of a new classification system of spinal lipomas based on embryonic stage. Understanding the embryonic background seems critical because different embryonic stages bring different clinical features and of course different spinal lipomas. Surgical indications and selection of surgical technique should be judged based on the background embryonic stage of the spinal lipoma. As time flows forward, technology continues to advance. Further accumulation of clinical experience and research will open the new horizon in the management of spinal lipomas and other SBO in the next half-century.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Reigel DH, McLone DG (1994) Tethered spinal cord. In: Cheek WR (ed) Pediatric Neurosurgery, 3rd edn. W.B.Saunders Company, Philadelphia, pp 77–95.
Yoshifuji K, Omori Y, Morota N (2021) Physiological defects of lumbosacral vertebral arches on computed tomography images in children. Childs Nerv Syst 37:1965–1971. (PMID: 3343808710.1007/s00381-021-05040-y)
Hoffman HJ, Hendrick EB, Humphreys RP (1976) The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Child’s Brain 2:145–155. (PMID: 786565)
Smith GK (2001) The history of spina bifida, hydrocephalus, paraplegia, and incontinence. Pediatr Surg Int 17:424–432. (PMID: 1152718210.1007/s003830000553)
Safavi-Abbasi S, Mapstone TB, Archer JB, Wilson C, Theodore N, Spetzler RF, Preul MC (2016) History of the current understanding and management of tethered spinal cord. J Neurosurg Spine 25:76–87. (PMID: 10.3171/2015.11.SPINE15406)
McClugage SG, Watanabe K, Shoja MM, Loukas M, Tubbs RS, Oakes WJ (2012) The history of the surgical repair of spina bifida. Childs Nerv Syst 28:1693–2000. (PMID: 2266952110.1007/s00381-012-1829-2)
Tubbs RS, Cezayirli P, Blackerby WT, Shoja MM, Loukas M, Oakes WJ (2013) Govert Bidloo (1649–1713) and the first description of lipomyelomeningocele. Childs Nerv Syst 29:1219–1221. (PMID: 2361287310.1007/s00381-013-2108-6)
Morton J (1875) The treatment of spina bifida. Br Med J 2:608–609. (PMID: 20748018229767510.1136/bmj.2.776.608-a)
Nicoll JH (1902) Spina bifida: its operative treatment amongst out-patients. Br Med J 1:1532–1535. (PMID: 20760324251264610.1136/bmj.1.2164.1532)
Pendleton C, Ahn ES, Jallo GI, QuiñoneS-Hinojosa A (2011) Harvey Cushing and early spinal dysraphism repair at Johns Hopkins Hospital. J Neurosurg Pediatrics 7:47–51. https://doi.org/10.3171/2010.10.PEDS10351. (PMID: 10.3171/2010.10.PEDS10351)
Ingraham FD, Lowrey JJ (1943) Spina bifida and cranium bifidum. III. Occult spinal disorders. N Eng J Med 228:745–751. (PMID: 10.1056/NEJM194306102282302)
Dubowitz V, Lober J, Zachary RB (1965) Lipoma of the cauda equina. Arch Dis Childhood 40:207–213. (PMID: 10.1136/adc.40.210.207)
Matson D (1969) Spina bifida and myelomeningocele. in: Neurosurgery of Infancy and Childhood, ed 2. Springfield, IL: Charles C Thomas, pp 5–60.
Rogers HM, Long DM, Chou SN, French LA (1971) Lipomas of the spinal cord and cauda equina. J Neurosurg 34:349–354. (PMID: 492627010.3171/jns.1971.34.3.0349)
McLone DG, Thompson DNP (2001) Lipoma of the spine. In: McLone DG (ed) Pediatric neurosurgery, 4 th edn. W.B. Saunders Company, Philadelphia, pp 289–301.
Yang J, Lee JY, Kim KH, Wang KC (2021) Disorders of secondary neurulation: mainly focused on pathoembryogenesis. J Korean Neurosurg Soc 64:386–405. (PMID: 33906343812851510.3340/jkns.2021.0023)
Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K (2004) Development of the posterior neural tube in human embryos. Anat Embryol 209:107–117. https://doi.org/10.1007/s00429-004-0421-2. (PMID: 10.1007/s00429-004-0421-2)
Shimokita E, Takahashi Y (2011) Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Develop Growth Differ 53:401–410. https://doi.org/10.1111/j.1440-169X.2011.01260.x. (PMID: 10.1111/j.1440-169X.2011.01260.x)
Dady A, Havis E, Escriou V, Catala M, Duband JL (2014) Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34:13208–13221. (PMID: 25253865660833510.1523/JNEUROSCI.1850-14.2014)
Eibach S, Moes G, Hou YJ, Zovickian J, Pang D (2017) Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation. Childs Nerv Syst 33:1633–1647. (PMID: 2779654810.1007/s00381-016-3288-7)
Wang KC, Lee JS, Kim K, Im YJ, Park K, Kim KH et al (2020) Do junctional neural tube defect and segmental spinal dysgenesis have the same pathoembryological background? Childs Nerv Syst 36:241–250. https://doi.org/10.1007/s00381-019-04425-4. (PMID: 10.1007/s00381-019-04425-431823069)
Morota N, Ihara S, Ogiwara H (2017) New classification of spinal lipomas based on embryonic stage. J Neurosurg Pediatr 19:428–439. https://doi.org/10.3171/2016.10.PEDS16247. (PMID: 10.3171/2016.10.PEDS1624728128702)
Zerah M, Roujeau T, Catala M, Pierre-Kahn A: Spinal lipomas, (2008). In: Özek MM, Cinalli G, Maixner WJ (eds) Spina bifida: management and outcome. Springer-Verlag, Milan, pp 445–474. (PMID: 10.1007/978-88-470-0651-5_36)
Chapman PH (1982) Congenital intraspinal lipomas: anatomic considerations and surgical treatment. Child’s Brain 9:37–47. (PMID: 7060411)
Arai H, Sato K, Okuda O, Miyajima M, Hishii M, Nakanishi H, Ishii H (2001) Surgical experience of 120 patients with lumbosacral lipomas. Acta Neurochir (Wien) 143:857–864. (PMID: 1168561710.1007/s007010170015)
Pang D (1995) Spinal cord lipomas (1995). In: Pang D (ed) Disorders of the pediatric spine. Raven Press, New York, pp 175–201.
Pang D, Zovickian J, Wong ST, Hou YJ, Moes GS (2013) Surgical treatment of complex spinal cord lipomas. Child’s Nerv Syst 29:1485–1513. (PMID: 10.1007/s00381-013-2187-4)
Pang D, Zovickian J, Oviedo A (2009) Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode. Neurosurgery 65:511–529. (PMID: 1968769710.1227/01.NEU.0000350879.02128.80)
Gomi A, Oguma H, Furukawa R (2013) Sacrococcygeal dimple: new classification and relationship with spinal lesions. Childs Nerv Syst 29:1641–1645. (PMID: 2401333410.1007/s00381-013-2135-3)
Harada A, Nishiyama K, Yoshimura J, Sano M, Fujii Y (2014) Intraspinal lesion associated with sacrococcygeal dimples. J Neurosurg Pediatr 14:81–86. (PMID: 2483504710.3171/2014.4.PEDS13431)
Tominey S, Kaliaperumal C, Callo P (2020) External validation of a new classification of spinal lipoma based on embryonic stage. J Neurosurg Pediatr 25:394–401. https://doi.org/10.3171/2019.11.PEDS19575. (PMID: 10.3171/2019.11.PEDS19575)
Bassett RC (1950) The neurologic deficit associated with lipomas of the cauda equina. Ann Snrg 131:109–116.
Schut L, Bruce DA, Sutton LN (1983) The management of the child with a lipomyelomeningocele. Clin Neurosurg 30:446–476. (PMID: 10.1093/neurosurgery/30.CN_suppl_1.464)
Hoffman HJ, Taecholarn C, Hendrick EB, Humphreys RP (1985) Management of lipomyelomeningoceles. Experience at the Hospital for Sick Children. Toronto J Neurosurg 62:1–8. (PMID: 396483910.3171/jns.1985.62.1.0001)
Pierre-Kahn A, Zerah M, Renier D, Cinalli G, Sainte-Rose C, Lellouch-Tubiana A, Brunelle F, Le Merrer M, Giudicelli Y, Pichon J, Kleinknecht B, Nataf F (1997) Congenital lumbosacral lipomas. Childs Nerv Syst 13:298–334. (PMID: 927228510.1007/s003810050090)
Kulkarni AV, Pierre-Kahn A, Zerah M (2004) Conservative management of asymptomatic spinal lipomas of the conus. Neurosurgery 54:868–873. https://doi.org/10.1097/01.ede.0000100282.03466.2c . PMID: 14712157. (PMID: 10.1097/01.ede.0000100282.03466.2c15046652)
Pang D, Zovickian J, Oviedo A (2010) Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode, part II. Neurosurgery 66:253–273. (PMID: 2004298810.1227/01.NEU.0000363598.81101.7B)
Wykes V, Desai D, Thompson DN (2012) Asymptomatic lumbosacral lipomas—a natural history study. Childs Nerv Syst 28:1731–1739. (PMID: 2256219310.1007/s00381-012-1775-z)
Talamonti G, D’Aliberti G, Nichelatti M, Debernardi A, Picano M, Redaelli T (2014) Asymptomatic lipomas of the medullary conus: surgical treatment versus conservative management. J Neurosurg Pediatrics 14:245–254. (PMID: 10.3171/2014.5.PEDS13399)
Pérez da Rosa S, Scavarda D, Choux M (2016) Results of the prophylactic surgery of lumbosacral lipomas 20 years of experience in the pediatric neurosurgery department La Timone Enfants Hospital, Marseille, France. Childs Nerv Syst 32:2205–2209. https://doi.org/10.1007/s00381-016-3198-8. (PMID: 10.1007/s00381-016-3198-8)
De Vloo P, Sharma J, Alderson L, Jankovic I, Tahir MZ, Desai D, Pang D, Thompson DNP (2022) Radical resection of lumbosacral lipomas in children: the Great Ormond Street Hospital experience. Child’s Nerv Syst 38:1113–1123. https://doi.org/10.1007/s00381-022-05483-x. (PMID: 10.1007/s00381-022-05483-x)
Yoshifuji K, Morota N, Omori Y, Koyanagi I, Mikuni N (2022) Physiological rapid growth of spinal lipoma in the early postnatal period. J Neurosurg Pediatr 29:634–642. https://doi.org/10.3171/2022.1.PEDS21474. (PMID: 10.3171/2022.1.PEDS2147435276650)
McLone DG (2001) Lipomyelomeningocele repair. In: McLone DG (ed) Pediatric neurosurgery, 4 th edn. W.B. Saunders Company, Philadelphia, pp 302—306.
Arocho-Quinones EV, Kolimas A, LaViolette PS, Kaufman BA, Foy AB, Zwienenberg M, Lew SM (2018) Split laminotomy versus conventional laminotomy: postoperative outcomes in pediatric patients. J Neurosurg Pediatr 21:615–625. https://doi.org/10.3171/2017.12.PEDS17368. (PMID: 10.3171/2017.12.PEDS1736829570034)
James HE, Williams J, Brock W (1984) Radical removal of lipoma of the conus and cauda equina with laser microneurosurgery. Neurosurgery 15:340–343. (PMID: 648314810.1227/00006123-198409000-00008)
Lim JX, Low SYY, Ng LP, Seow WT (2022) Prevention and treatment of CSF leaks in congenital complex spinal lipomas. Acta Neurochir 164:1157–1160. https://doi.org/10.1007/s00701-021-05095-5. (PMID: 10.1007/s00701-021-05095-535015155)
Yahanda AT, Simon LE, Limbrick DD Jr (2021) Outcomes for various dural graft materials after posterior fossa decompression with duraplasty for Chiari malformation type 1: a systematic review and meta-analysis. J Neurosurg 135:1356–1369. https://doi.org/10.3171/2020.9.JNS202641. (PMID: 10.3171/2020.9.JNS202641)
Pang D (2015) Total resection of complex spinal cord lipomas: how, why, and when to operate? Neurol Med Chir (Tokyo) 55:695–721. https://doi.org/10.2176/nmc.ra.2014-0442. (PMID: 10.2176/nmc.ra.2014-044226345666)
Pang D (2019) Surgical management of complex spinal cord lipomas: how. Why, and when to operate. A review J Neurosurg Pediatr 23:537–556. https://doi.org/10.3171/2019.2.PEDS18390. (PMID: 10.3171/2019.2.PEDS1839031042665)
Pang D, Casey K (1983) Use of an anal sphincter pressure monitor during operations on the sacral spinal cord and nerve roots. Neurosurgery 13:562–568. (PMID: 635893610.1227/00006123-198311000-00013)
Kothbauer KF, Novak K (2004) Intraoperative monitoring for tethered cord surgery: an update. Neurosurg Focus 16 (2): Article 8.
Kothbauer KF, Deletis V (2010) Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst 26:247–253. https://doi.org/10.1007/s00381-009-1020-6. (PMID: 10.1007/s00381-009-1020-619904544)
Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C (2013) Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst 29:1611–1624. https://doi.org/10.1007/s00381-013-2188-3. (PMID: 10.1007/s00381-013-2188-324013331)
Dulfer SE, Drost G, Lange F, Journee HL, Wapstra FH, Hoving EW (2017) Long-term evaluation of intraoperative neurophysiological monitoring-assisted tethered cord surgery. Childs Nerv Syst 33:1985–1995. https://doi.org/10.1007/s00381-017-3478-y. (PMID: 10.1007/s00381-017-3478-y286769745644688)
Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumor. Neurosurgery 41:1327–1336. (PMID: 940258410.1097/00006123-199712000-00017)
Deletis V, Vodusek DB (1997) Intraoperative recording of the bulbocavernosus reflex. Neurosurgery 40:88–93. (PMID: 8971829)
Morota N (2019) Intraoperative neurophysiological monitoring of the bulbocavernosus reflex during surgery for conus spinal lipoma: what are the warning criteria? J Neurosurg Pediatr 23:639–647. https://doi.org/10.3171/2018.12.PEDS18535. (PMID: 10.3171/2018.12.PEDS18535)
Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H (1992) Intraoperative monitoring of the dorsal sacral roots: minimizing the risk of iatrogenic micturition disorders. Neurosurgery 30:72–75. (PMID: 173845910.1227/00006123-199201000-00013)
Ogiwara H, Morota N (2014) Pudendal afferents mapping in posterior sacral rhizotomies. Neurosurgery 74:171–175. https://doi.org/10.1227/NEU.0000000000000235. (PMID: 10.1227/NEU.000000000000023524165168)
Lichtenstein BW (1940) Spinal dysraphism: spina bifida and myelodysplasia. Arch Neurol Psychiatry 44:792–809. (PMID: 10.1001/archneurpsyc.1940.02280100094007)
Garceau GJ (1953) The filum terminale syndrome (the cord-traction syndrome). J Bone Joint Surg Am 35-A:711–716.
Saker E, Cox M, Loukas M, Oskouian RJ, Tubbs RS (2017) George J. Garceau (1896–1977) and the first introduction of the “filum terminale syndrome.” Childs Nerv Syst 33:1233–1236. https://doi.org/10.1007/s00381-016-3205-0. (PMID: 10.1007/s00381-016-3205-027476036)
Yamada S, Won DJ, Pezeshkpour G, Yamada BS, Yamada SM, Siddiqi J, Zouros A, Colohan ART (2007) Pathophysiology of tethered cord syndrome and similar complex disorders. Neurosurg Focus 23(2):E6. https://doi.org/10.3171/FOC-07/08/E6. (PMID: 10.3171/FOC-07/08/E617961011)
Yamada S, Zinke DE, Sanders D (1981) Pathophysiology of “tethered cord syndrome.” J Neurosurg 54:494–503. (PMID: 625930110.3171/jns.1981.54.4.0494)
Tani S, Yamada S, Knighton RS (1987) Extensibility of the lumbar and sacral cord. Pathophysiology of the tethered spinal cord in cats. J Neurosurg 66:116–123. (PMID: 378324210.3171/jns.1987.66.1.0116)
Yamada S, Won DJ (2007) What is the true tethered cord syndrome? Childs Nerv Syst 23:371–375. https://doi.org/10.1007/s00381-006-0276-3. (PMID: 10.1007/s00381-006-0276-317226037)
Bui CJ, Tubbs RS, Oakes WJ (2007) Tethered cord syndrome in children: a review. Neurosurg Focus 23(2):E2. (PMID: 1796101710.3171/FOC-07/08/E2)
Cools MJ, Al-Holou WN, Stetler WR Jr, Wilson TJ, Muraszko KM, Ibrahim M, Marca FL, Garton HJL, Maher CO (2014) Filum terminale lipomas: imaging prevalence, natural history, and conus position. J Neurosurg Pediatr 13:559–567. (PMID: 2462851110.3171/2014.2.PEDS13528)
Lim JX, Fong E, Goh C, Ng LP, Merchant K, Low DCY, Seow WT, Low SYY (2023) Fibrofatty filum terminale: long-term outcomes from a Singapore children’s hospital. J Neurosurg Pediatr 31:197–205. (PMID: 3646182910.3171/2022.8.PEDS22103)
Kesler H, Dias MS, Kalapos P (2007) Termination of the normal conus medullaris in children: a whole-spine magnetic resonance imaging study. Neurosurg Focus 23(2):E7. (PMID: 1796100610.3171/FOC-07/08/E7)
Khoury AE, Hendrick EB, McLorie GA, Kulkarni A, Churchill BM (1990) Occult spinal dysraphism: clinical and urodynamic outcome after division of the filum terminale. J Urol 144:426–428. https://doi.org/10.1016/s0022-5347(17)39481-8. (PMID: 10.1016/s0022-5347(17)39481-82197434)
Selden NR, Nixon RR, Skoog SR, Lashley DB (2006) Minimal tethered cord syndrome associated with thickening of the terminal filum. J Neurosurg 105(3 Suppl Pediatrics):214–218. (PMID: 16970235)
Selden NR (2006) Occult tethered cord syndrome: the case for surgery. J Neurosurg 104(5 Suppl Pediatrics):302–304. (PMID: 16848085)
Drake JM (2006) Occult tethered cord syndrome: not an indication for surgery. J Neurosurg 104(5 Suppl Pediatrics):305–308. (PMID: 16848086)
Steinbok P, Garton HJL, Gupta N (2006) Occult tethered cord syndrome: a survey of practice patterns. J Neurosurg 104(5 Suppl Pediatrics):309–313. (PMID: 16848087)
Steinbok P, MacNeily AE (2007) Section of the terminal filum for occult tethered cord syndrome: toward a scientific answer. Neurosurg Focus 23(2):E5. (PMID: 1796101510.3171/FOC-07/08/E5)
Michael MM, Garton ALA, Kuzan-Fischer CM, Uribe-Cardenas R, Greenfield JP (2021) A critical analysis of surgery for occult tethered cord syndrome. Childs Nerv Syst 37:3003–3011. https://doi.org/10.1007/s00381-021-05287-5. (PMID: 10.1007/s00381-021-05287-534268593)
Tamura G, Morota N, Ihara S (2017) Impact of magnetic resonance imaging and urodynamic studies on the management of sacrococcygeal dimples. J Neurosurg Pediatr 20:289–297. (PMID: 2868612610.3171/2017.5.PEDS16719)
Kamei N, Nakamae T, Nakanishi K, Morisako T, Harada T, Maruyama T, Adachi N (2022) Comparison of the electrophysiological characteristics of tight filum terminale and tethered cord syndrome. Acta Neurochir 164:2235–2242. https://doi.org/10.1007/s00701-022-05298-4. (PMID: 10.1007/s00701-022-05298-435790608)
Lew SM, Kothbauer KF (2007) Tethered cord syndrome: an updated review. Pediatr Neurosurg 43:236–248. https://doi.org/10.1007/s00701-022-05298-4. (PMID: 10.1007/s00701-022-05298-417409793)
Dias MS, Wang M, Rizk EB, Bowman R, Partington MD, Blount JP, Rocque BG, Hopson B, Ettinger D, Lee A, Walker WO, National Spina Bifida Registry Group (2021) Tethered spinal cord among individuals with myelomeningocele: an analysis of the National Spina Bifida Patient Registry. J Neurosurg Pediatr 28:21–27. (PMID: 10.3171/2020.12.PEDS20868)
Goodrich DJ, Patel D, Loukas M, Tubbs RS, Oakes WJ (2016) Symptomatic retethering of the spinal cord in postoperative lipomyelomeningocele patients : a meta-analysis. Childs Nerv Syst 32:121–126. (PMID: 2624866910.1007/s00381-015-2839-7)
Hayashi T, Kimiwada T, Shirane R, Tominaga T (2022) Retethering risk in pediatric spinal lipoma of the conus medullaris. J Neurosurg Pediatr 29:342–349. (PMID: 3479861410.3171/2021.9.PEDS21413)
Lee JY, Kim KH, Park K, Wang KC (2020) Retethering: a neurosurgical viewpoint. J Korean Neurosurg Soc 63:345–357. (PMID: 10.3340/jkns.2020.0039)
Colak A, Pollack IF, Albright AL (1998) Recurrent tethering: a common long term problem after lipomyelomeningocele repair. Pediatr Neurosurg 29:184–190. (PMID: 987624710.1159/000028719)
Maher CO, Goumnerova L, Madsen JR, Proctor M, Scott M (2007) Outcome following multiple repeated spinal cord untethering operations. J Neurosurg 106(6 Suppl Pediatrics):434–438. (PMID: 17566398)
Sakamoto H, Hakuba A, Fujitani K, Nishimura S (1991) Surgical treatment of the retethered spinal cord after repair of lipomyelomeningocele. J Neurosurg 74:709–714. (PMID: 201377010.3171/jns.1991.74.5.0709)
Tubbs RS, Oakes WJ (2006) A simple method to deter retethering in patients with spinal dysraphism. Childs Nerv Syst 22:715–716. (PMID: 1652857810.1007/s00381-006-0051-5)
Morota N, Ihara S, Inukai M, Kuroha S (2023) Ventral anchoring of the conus medullaris: a new surgical technique preventing the recurrence of retethering after surgery for tethered spinal cord. Childs Nerv Syst (in press).
Hsieh PC, Ondra SI, Grande AW, O‘Shaughnessy BA, Bierbrauer K, Crone KR, Halpin RJ, Suk I, Koski T, Gokaslan Zl, Kuntz C, (2009) Posterior vertebral column subtraction osteotomy: a novel surgical approach for the treatment of multiple recurrences of tethered cord syndrome. J Neurosurg Spine 10:278–286. (PMID: 1944198310.3171/2008.10.SPINE08123)
McVeigh LG, Anokwute MC, Chen S, Jea A (2022) Spinal column shortening for tethered cord syndrome: a systematic review and individual patient data meta-analysis. J Neurosurg Pediatr 29:624–633. (PMID: 3524590310.3171/2022.1.PEDS21503)
Xiong Y, Yang L, Zhen W, Fangyong D, Feng W, Ting L (2018) Conservative and surgical treatment of pediatric asymptomatic lumbosacral lipoma: a meta-analysis. Neurosurg Rev 41:737–743. (PMID: 2779660210.1007/s10143-016-0796-6)
Seki T, Hida K, Yano S, Houkin K (2018) surgical outcomes of pediatric patients with asymptomatic tethered cord syndrome. Asian Spine J 12:551–555. (PMID: 29879784600216410.4184/asj.2018.12.3.551)
Hayashi C, Kumano Y, Hirokawa D, Sato H, Yamazaki Y (2020) Long-term urological outcomes of spinal lipoma after prophylactic untethering in infancy: real-world outcomes by lipoma anatomy. Spinal Cord 58:490–495. (PMID: 3177234510.1038/s41393-019-0385-y)
Vora TK, Girishan S, Moorthy RK, Rajshekhar V (2021) Early- and long-term surgical outcomes in 109 children with lipomyelomeningocele. Childs Nerv Syst 37:1623–1632. (PMID: 3340471310.1007/s00381-020-05000-y)
Tu A, Hengel R, Cochrane DD (2016) The natural history and management of patients with congenital deficits associated with lumbosacral lipomas. Childs Nerv Syst 32:667–673. (PMID: 2675390210.1007/s00381-015-3008-8)
Thompson DNP, Spoor J, Schotman M, Maestri S, Craven CL, Desai D (2021) Does conus morphology have implications for outcome in lumbosacral lipoma? Childs Nerv Syst 37:2025–2031. (PMID: 3360471810.1007/s00381-021-05081-3)
Saeed F, Tyagi A (2023) Transition from partial to near-total/radical resection of spinal cord lipomas. Childs Nerv Syst.  https://doi.org/10.1007/s00381-023-05844-0.
Valentini LG, Babini M, Cordella R, Beretta E, Destro F, Murabito P, Caldiroli D, Devigili G, Selvaggio G (2021) Early de-tethering: analysis of urological and clinical consequences in a series of 40 children. Childs Nerv Syst 37:941–949. (PMID: 3272893310.1007/s00381-020-04838-6)
Sarkar S, Vora TK, Rajshekhar V (2022) Risk factors for pre-operative functional deterioration in children with lipomyelomeningocele. Childs Nerv Syst 38:587–595. https://doi.org/10.1007/s00381-021-05404-4. (PMID: 10.1007/s00381-021-05404-434731269)
Kang JK, Yoon KJ, Ha SS, Lee IW, Jeun SS, Kang SG (2009) Surgical management and outcome of tethered cord syndrome in school-aged children, adolescents, and young adults. J Korean Neurosurg Soc 46:468–471. (PMID: 20041057279635310.3340/jkns.2009.46.5.468)
Valentini LG, Selvaggio G, Erbetta A, Cordella R, Pecoraro MG, Bova S, Boni E, Beretta E, Furlanetto M (2013) Occult spinal dysraphism: lessons learned by retrospective analysis of 149 surgical cases about natural history, surgical indications, urodynamic testing, and intraoperative neurophysiological monitoring. Childs Nerv Syst 29:1657–1669. (PMID: 2401333610.1007/s00381-013-2186-5)
Yerkes EB, Halline C, Yoshiba G, Meyer TA, Rosoklija I, Bowman R, McLone D, Cheng EY (2017) Lipomyelomeningocele for the urologist: should we view it the same as myelomeningocele? J Pediatr Urol 13:371.e1-371.e8. (PMID: 2858385310.1016/j.jpurol.2017.04.014)
Kim L, Do MT, Jung HD, Im YJ, Wang KC, Lee JY, Park K (2022) Preoperative videourodynamic study is helpful in predicting long-term postoperative voiding function in asymptomatic patients with closed spinal dysraphism. Int Neurourol J 26:60–68. (PMID: 35183068898469610.5213/inj.2142246.123)
Ogiwara H, Lyszczarz A, Alden TD, Bowman RM, McLoneDG TT (2011) Retethering of transected fatty filum terminales. J Neurosurg Pediatrics 7:42–46. https://doi.org/10.3171/2010.10.PEDS09550. (PMID: 10.3171/2010.10.PEDS09550)
Finger T, Schaumann A, Grillet F, Schulz M, Thomale UW (2020) Retethering after transection of a tight filum terminale, postoperative MRI may help to identify patients at risk. Childs Nerv Syst 36:1499–1506. (PMID: 3187524510.1007/s00381-019-04458-9)
Hayashi T, Takemoto J, Ochiai T, Kimiwada T, Shirane R, Sakai K, Nakagawa H, Tominaga T (2013) Surgical indication and outcome in patients with postoperative retethered cord syndrome. J Neurosurg Pediatr 11:133–139. (PMID: 2317614010.3171/2012.10.PEDS12220)
Stamates MM, Frim DM, Yang CW, Katzman GL, Ali S (2018) Magnetic resonance imaging in the prone position and the diagnosis of tethered spinal cord. Neurosurg Pediatr 21:4–10. (PMID: 10.3171/2017.3.PEDS16596)
Bruzek AK, Starr J, Garton HJL, Muraszko KM, Maher CO, Strahle JM (2019) Syringomyelia in children with closed spinal dysraphism: long-term outcomes after surgical intervention. J Neurosurg Pediatr 13:1–7.
Idriceanu T, Beuriat PA, Di Rocco F, Szathmari A, Mottolese C (2022) Recurrent tethering in conus lipomas: a late complication not to be ignored. World Neurosurg 168:e12–e18. (PMID: 3586364610.1016/j.wneu.2022.07.048)
Kondo A, Morota N, Date H, Yoshifuji K, Morishima T, Miyazato M, Shirane R, Sakai H, Pooh KH, Watanabe T (2015) Awareness of folic acid use increases its consumption, and reduces the risk of spina bifida. Br J Nutr 114:84–90. https://doi.org/10.1017/S0007114515001439. (PMID: 10.1017/S000711451500143925999131)
Shlobin NA, LoPresti MA, Du RY, Lam S (2021) Folate fortification and supplementation in prevention of folate-sensitive neural tube defects: a systematic review of policy. J Neurosurg Pediatr 27:294–310. (PMID: 10.3171/2020.7.PEDS20442)
Caceres A, Bount JP, Messing-Jünger M, Chatterjee S, Fieggen G, Salomao JF (2021) The International Society for Pediatric Neurosurgery resolution on mandatory folic acid fortification of staple foods for prevention of spina bifida and anencephaly and associated disability and child mortality. Childs Nerv Syst 37:1809–1812. (PMID: 3394214210.1007/s00381-021-05191-y)
McNeely PD, Howes WJ (2004) Ineffectiveness of dietary folic acid supplementation on the incidence of lipomyelomeningocele: pathogenetic implications. J Neurosurg (Pediatrics 2) 100:98–100.
فهرسة مساهمة: Keywords: Bulbocavernosus reflex; Intraoperative neurophysiology; Junctional neurulation; Secondary neurulation; Spina bifida occulta; Spinal lipoma; Surgery; Tethered cord syndrome; Tethered spinal cord
تواريخ الأحداث: Date Created: 20230708 Date Completed: 20231030 Latest Revision: 20231107
رمز التحديث: 20231108
DOI: 10.1007/s00381-023-06024-w
PMID: 37421423
قاعدة البيانات: MEDLINE
الوصف
تدمد:1433-0350
DOI:10.1007/s00381-023-06024-w