دورية أكاديمية

Sub-regional variation in atmospheric and land variables regulates tea yield in the Dooars region of West Bengal, India.

التفاصيل البيبلوغرافية
العنوان: Sub-regional variation in atmospheric and land variables regulates tea yield in the Dooars region of West Bengal, India.
المؤلفون: Mallik P; School of Oceanographic Studies, Jadavpur University, Kolkata, 700032, India. piyasheemallik@gmail.com., Ghosh T; School of Oceanographic Studies, Jadavpur University, Kolkata, 700032, India.
المصدر: International journal of biometeorology [Int J Biometeorol] 2023 Oct; Vol. 67 (10), pp. 1591-1605. Date of Electronic Publication: 2023 Jul 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: United States NLM ID: 0374716 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1254 (Electronic) Linking ISSN: 00207128 NLM ISO Abbreviation: Int J Biometeorol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Springer Verlag
Original Publication: Leiden.
مواضيع طبية MeSH: Soil* , Tea* , Crop Production* , Microclimate* , Weather*, Cluster Analysis ; India ; Climate ; Spatial Analysis ; Gardens
مستخلص: Climatic variables can have localized variations within a region and these localized climate patterns can have significant effect on production of climate-sensitive crops such as tea. Even though tea cultivation and industries significantly contribute to employment generation and foreign earnings of several South Asian nations including India, sub-regional differences in the effects of climatic and soil variables on tea yield have remained unexplored since past studies focused on a tea-producing region as a whole and did not account for local agro-climatic conditions. Here, using a garden-level panel dataset based on tea gardens of Dooars region, a prominent tea-producing region in India, we explored how sub-regional variations in climatic and land variables might differently affect tea yield within a tea-producing region. Our analysis showed that the Dooars region harboured significant spatial variability for different climatic (temperature, precipitation, surface solar radiation) and soil temperature variables. Using graph-based Louvain clustering of tea gardens, we identified four spatial sub-regions which varied in terms of topography, annual and seasonal distribution of climatic and land variables and tea yield. Our sub-region-specific panel regression analyses revealed differential effects of climatic and land variables on tea yield of different sub-regions. Finally, for different emission scenario, we also projected future (2025-2100) tea yield in each sub-region based on predictions of climatic variables from three GCMs (MIROC5, CCSM4 and CESM1(CAM5)). A large variation in future seasonal production changes was projected across sub-regions (-23.4-35.7% changes in premonsoon, -4.2-3.1% changes in monsoon and -10.9-10.7% changes in postmonsoon tea production, respectively).
(© 2023. The Author(s) under exclusive licence to International Society of Biometeorology.)
References: Akhter J, Das L, Deb A (2017) CMIP5 ensemble-based spatial rainfall projection over homogeneous zones of India. Climate Dynam 49:1885–1916. https://doi.org/10.1007/s00382-016-3409-8. (PMID: 10.1007/s00382-016-3409-8)
Alrteimei HA, Ash’aari ZH, Muharram FM (2022) Last decade assessment of the impacts of regional climate change on crop yield variations in the Mediterranean region. Agriculture 12(11):1787. (PMID: 10.3390/agriculture12111787)
Arora NK (2019) Impact of climate change on agriculture production and its sustainable solutions. Environ Sustain 2(2):95–96. https://doi.org/10.1007/s42398-019-00078-w. (PMID: 10.1007/s42398-019-00078-w)
Babar SF (2013) Analysis of south west monsoon rainfall trend using statistical techniques over Nethravathi Basin. Int J Adv Technol Civ Eng 2(1):2231. https://doi.org/10.47893/ijatce.2013.1066. (PMID: 10.47893/ijatce.2013.1066)
Bandopadhyay S (2016) Does elevation impact local level climate change? An analysis based on fifteen years of daily diurnal data and time series forecasts. Pacific Sci Rev A Nat Sci Eng 18(3):241–253. https://doi.org/10.1016/j.psra.2016.11.002. (PMID: 10.1016/j.psra.2016.11.002)
Bellucci A, Haarsma R, Gualdi S et al (2015) An assessment of a multi-model ensemble of decadal climate predictions. Climate Dynam 44:2787–2806. https://doi.org/10.1007/s00382-014-2164-y. (PMID: 10.1007/s00382-014-2164-y)
Benestad RE, Mezghani A, Parding KM (2015) ‘esd’ - the empirical-statistical downscaling tool & its visualisation capabilities. Norwegian Meteorologi Institute, pp 55–58.
Beyene AN (2015) Precipitation and temperature trend analysis in Mekelle city, Northern Ethiopia, the case of Illala meteorological station. J Earth Sci Clim Change 07. https://doi.org/10.4172/2157-7617.1000324.
Bhagat RM, Baruah RD, Safique S (2010) Climate and tea [Camellia sinensis (L.) O. Kuntze] production with special reference to north eastern India: a review. J Environ Res Dev 4:1017–1028.
Biggs EM, Gupta N, Saikia SD, Duncan JMA (2018a) Tea production characteristics of tea growers (plantations and smallholdings) and livelihood dimensions of tea workers in Assam, India. Data Br 17:1379–1387. https://doi.org/10.1016/j.dib.2018.02.056. (PMID: 10.1016/j.dib.2018.02.056)
Biggs EM, Gupta N, Saikia SD, Duncan JMA (2018b) The tea landscape of Assam: multi-stakeholder insights into sustainable livelihoods under a changing climate. Environ Sci Policy 82:9–18. https://doi.org/10.1016/j.envsci.2018.01.003. (PMID: 10.1016/j.envsci.2018.01.003)
Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008. (PMID: 10.1088/1742-5468/2008/10/P10008)
Boehm R, Cash SB, Anderson BT et al (2016) Association between empirically estimated monsoon dynamics and other weather factors and historical tea yields in China: results from a yield response model. Climate 4:20. https://doi.org/10.3390/cli4020020. (PMID: 10.3390/cli4020020)
Carr M (1972) The climatic requirements of the tea plant: a review. Exp Agric 8:1–14. https://doi.org/10.1017/S0014479700023449. (PMID: 10.1017/S0014479700023449)
Carr M, Stephens W (1992) Climate, weather and the yield of tea. In: Tea: Cultivation to consumption. Springer, Dordrecht Netherlands, pp 87–135. (PMID: 10.1007/978-94-011-2326-6_4)
Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2012) Revisiting Swiss temperature trends 1959-2008. Int J Climatol 32(2):203–213. https://doi.org/10.1002/joc.2260. (PMID: 10.1002/joc.2260)
Chaturvedi RK, Joshi J, Jayaraman M et al (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci:791–802.
Chombo O, Lwasa S, Tenywa M (2020) Spatial and temporal variation in climate trends in the Kyoga Plains of Uganda: analysis of meteorological data and farmers’ perception. J Geosci Environ Prot 08(1):46. https://doi.org/10.4236/gep.2020.81004. (PMID: 10.4236/gep.2020.81004)
Christensen JH, Kanikicharla KK, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. In: Climate change 2013 the physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Codjoe SNA, Owusu G (2011) Climate change/variability and food systems: evidence from the Afram Plains, Ghana. Reg Environ Chang 11:753–765. https://doi.org/10.1007/s10113-011-0211-3. (PMID: 10.1007/s10113-011-0211-3)
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Syst 1695(5):1–9.
Datta P, Behera B, Rahut DB (2022) Climate change and Indian agriculture: a systematic review of farmers’ perception, adaptation, and transformation. Environ Challenges 8:100543. https://doi.org/10.1016/j.envc.2022.100543. (PMID: 10.1016/j.envc.2022.100543)
De Costa WAJM, Mohotti AJ, Wijeratne MA (2007) Ecophysiology of tea. Brazilian J Plant Physiol 19:299–332. https://doi.org/10.1590/S1677-04202007000400005. (PMID: 10.1590/S1677-04202007000400005)
Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828. (PMID: 10.1002/qj.828)
Duncan JMA, Saikia SD, Gupta N, Biggs EM (2016) Observing climate impacts on tea yield in Assam, India. Appl Geogr 77:64–71. https://doi.org/10.1016/j.apgeog.2016.10.004. (PMID: 10.1016/j.apgeog.2016.10.004)
Dutta R (2014) Climate change and its impact on tea in northeast India. J Water Clim Chang 5:625–632. https://doi.org/10.2166/wcc.2014.143. (PMID: 10.2166/wcc.2014.143)
Eitzinger J, Trnka M, Semerádová D et al (2013) Regional climate change impacts on agricultural crop production in Central and Eastern Europe - hotspots, regional differences and common trends. J Agric Sci 151(6):787–812. https://doi.org/10.1017/S0021859612000767. (PMID: 10.1017/S0021859612000767)
FAO (2016) Report of the working group on climate change of the FAO intergovernmental group on tea.
Fordham R (1970) Factors affecting tea yields in Malawi. In: Annu Report, Tea Res Found Cent Africa Mulanje, pp 71–130.
Geetha R, Ramachandran A, Indumathi J et al (2019) Characterization of future climate extremes over Tamil Nadu, India, using high-resolution regional climate model simulation. Theor Appl Climatol 138:1297–1309. https://doi.org/10.1007/s00704-019-02901-0. (PMID: 10.1007/s00704-019-02901-0)
Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO) Bulletin 58(3):17.
Gornall J, Betts R, Burke E et al (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc B Biol Sci 365(1554):2973–2989. (PMID: 10.1098/rstb.2010.0158)
Gudmundsson L (2016) qmap: statistical transformations for post-processing climate model output. R package version 1.0–3. https://cran.rproject.org/web/packages/qmap/.
Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods. Hydrol Earth Syst Sci 16:3383–3390. https://doi.org/10.5194/hess-16-3383-2012. (PMID: 10.5194/hess-16-3383-2012)
Gunathilaka RPD, Smart JCR, Fleming CM (2017) The impact of changing climate on perennial crops: the case of tea production in Sri Lanka. Clim Change 140:577–592. https://doi.org/10.1007/s10584-016-1882-z. (PMID: 10.1007/s10584-016-1882-z)
Hadfield BYW (1974) Shade in north-east Indian tea plantations. I. The shade pattern. J Appl Ecol 11:151–178. Published by: British Ecological Society Stable.  https://www.jstor.or.
Hijmans RJ, Williams E, Vennes C 2019geosphere: spherical trigonometry. R package version 1.5-10. Packag Geosph.
Isik M, Devadoss S (2006) An analysis of the impact of climate change on crop yields and yield variability. Appl Econ 38(7):835–844. https://doi.org/10.1080/00036840500193682. (PMID: 10.1080/00036840500193682)
Jayasinghe SL, Kumar L (2021) Potential impact of the current and future climate on the yield, quality, and climate suitability for tea [Camellia sinensis (L.) O. Kuntze]: a systematic review. Agronomy 11:619. (PMID: 10.3390/agronomy11040619)
Jayasinghe SL, Kumar L, Hasan MK (2020) Relationship between environmental covariates and Ceylon tea cultivation in Sri Lanka. Agronomy 10(4):476. https://doi.org/10.3390/agronomy10040476. (PMID: 10.3390/agronomy10040476)
Jeganathan A, Andimuthu R, Prasannavenkatesh R, Kumar DS (2016) Spatial variation of temperature and indicative of the urban heat island in Chennai Metropolitan Area, India. Theor Appl Climatol 123:83–95. https://doi.org/10.1007/s00704-014-1331-8. (PMID: 10.1007/s00704-014-1331-8)
Jena P, Azad S, Rajeevan MN (2016) CMIP5 projected changes in the annual cycle of Indian monsoon rainfall. Climate 4:14. https://doi.org/10.3390/cli4010014. (PMID: 10.3390/cli4010014)
Jhajharia D, Dinpashoh Y, Kahya E et al (2014) Trends in temperature over Godavari River basin in Southern Peninsular India. Int J Climatol 34:1369–1384. https://doi.org/10.1002/joc.3761. (PMID: 10.1002/joc.3761)
Joshi SC, Palni LMS (1998) Clonal variation in temperature response of photosynthesis in tea. Plant Sci 137(2):225–232. https://doi.org/10.1016/S0168-9452(98)00015-6. (PMID: 10.1016/S0168-9452(98)00015-6)
Juza M, Tintoré J (2021) Multivariate sub-regional ocean indicators in the Mediterranean Sea: from event detection to climate change estimations. Front Mar Sci 8:610589. https://doi.org/10.3389/fmars.2021.610589. (PMID: 10.3389/fmars.2021.610589)
Kim J, Sang W, Shin P et al (2015) Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. J Crop Sci Biotechnol 18:257–264. https://doi.org/10.1007/s12892-015-0103-z. (PMID: 10.1007/s12892-015-0103-z)
Kousis I, Pigliautile I, Pisello AL (2021) Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Sci Rep 11:9732. https://doi.org/10.1038/s41598-021-88344-y. (PMID: 10.1038/s41598-021-88344-y)
Kuhn M (2015) Caret: classification and regression training. Sci Rep 11(1):9732.
Li H, Calder CA, Cressie N (2007) Beyond Moran’s I: testing for spatial dependence based on the spatial autoregressive model. Geogr Anal 39(4):357–375. https://doi.org/10.1111/j.1538-4632.2007.00708.x. (PMID: 10.1111/j.1538-4632.2007.00708.x)
Li J, Huo R, Chen H et al (2021) Comparative assessment and future prediction using CMIP6 and CMIP5 for annual precipitation and extreme precipitation simulation. Front Earth Sci 9:687976. https://doi.org/10.3389/feart.2021.687976. (PMID: 10.3389/feart.2021.687976)
Liu J, Folberth C, Yang H et al (2013) A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PloS One 8:e57750. https://doi.org/10.1371/journal.pone.0057750. (PMID: 10.1371/journal.pone.0057750)
Mallik P, Ghosh T (2021a) Impact of climate on tea production: a study of the Dooars region in India. Theor Appl Climatol 147:559–573. https://doi.org/10.1007/s00704-021-03848-x. (PMID: 10.1007/s00704-021-03848-x)
Mallik P, Ghosh T (2021b) Impact of surface-net solar radiation and soil temperature on tea production in India: a study of the Dooars region in West Bengal. Reg Environ Chang 21:1–14. https://doi.org/10.1007/s10113-021-01844-5. (PMID: 10.1007/s10113-021-01844-5)
Meehl GA, Washington WM, Arblaster JM et al (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Climate 26:6287–6308. https://doi.org/10.1175/JCLI-D-12-00572.1. (PMID: 10.1175/JCLI-D-12-00572.1)
Meher JK, Das L, Akhter J et al (2017) Performance of CMIP3 and CMIP5 GCMs to simulate observed rainfall characteristics over the Western Himalayan region. J Climate 30:7777–7799. https://doi.org/10.1175/JCLI-D-16-0774.1. (PMID: 10.1175/JCLI-D-16-0774.1)
Mendelsohn R (2008) The impact of climate change on agriculture in developing countries. J Nat Resour Policy Res 1:5–19. https://doi.org/10.1080/19390450802495882. (PMID: 10.1080/19390450802495882)
Mishra V, Kumar D, Ganguly AR et al (2014) Reliability of regional and global climate models to simulate precipitation extremes over India. J Geophys Res Atmos 119:9301–9323. https://doi.org/10.1002/2014JD021636. (PMID: 10.1002/2014JD021636)
Mukhopadhyay A, Roy S (2009) Changing dimensions of IPM in the tea plantations of the north eastern sub-Himalayan region. In: Ramamurthy VV, Gupta GP, Puri SN (eds) Proceedings of the national symposium on IPM strategies to combat emerging pests in the current scenario of climate change. Entomological Society of India, IARI, New Delhi, pp 290–302.
Mukhopadhyay M, Mondal TK, Mukhopadhyay M, Mondal TK (2017) Cultivation, improvement, and environmental impacts of tea. In: Oxford research encyclopedia of environmental science. Oxford University Press.
Nsubuga FWN, Botai OJ, Olwoch JM et al (2014) The nature of rainfall in the main drainage sub-basins of Uganda. Hydrol Sci J 59(2):278–299. https://doi.org/10.1080/02626667.2013.804188. (PMID: 10.1080/02626667.2013.804188)
Panda A, Sahu N (2019) Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos Sci Lett 20(10):e932. https://doi.org/10.1002/asl.932. (PMID: 10.1002/asl.932)
Pandey BK, Khare D, Kawasaki A, Mishra PK (2019) Climate change impact assessment on blue and green water by coupling of representative CMIP5 climate models with physical based hydrological model. Water Resour Manag 33:141–158. https://doi.org/10.1007/s11269-018-2093-3. (PMID: 10.1007/s11269-018-2093-3)
Parry M, Rosenzweig C, Iglesias A et al (1999) Climate change and world food security: a new assessment. Glob Environ Chang 9:S51–S67. (PMID: 10.1016/S0959-3780(99)00018-7)
Parth Sarthi P, Kumar P, Ghosh S (2016) Possible future rainfall over Gangetic Plains (GP), India, in multi-model simulations of CMIP3 and CMIP5. Theor Appl Climatol 124:691–701. https://doi.org/10.1007/s00704-015-1447-5. (PMID: 10.1007/s00704-015-1447-5)
Patra PS, Bisen JS, Kumar R et al (2013) Effect of climate change on production of Darjeeling tea: a case study in Darjeeling Tea Research & Development Centre, Tea Board, Kurseong. GJBAHS 2:174–180.
Pepin N, Bradley RS, Diaz HF et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430. (PMID: 10.1038/nclimate2563)
Pepin NC, Arnone E, Gobiet A et al (2022) Climate changes and their elevational patterns in the mountains of the world. Rev Geophys 60:e2020RG000730. (PMID: 10.1029/2020RG000730)
Pörtner H, Roberts D, Tignor M et al (eds) (2022) Climate change 2022: impacts, adaptation and vulnerability: contribution of working group II to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Praveen B, Sharma P (2020) Climate change and its impacts on Indian agriculture: an econometric analysis. J Public Aff 20:e1972. https://doi.org/10.1002/pa.1972. (PMID: 10.1002/pa.1972)
Rama Rao CA, Raju BMK, Subba Rao AVM et al (2016) A district level assessment of vulnerability of Indian agriculture to climate change. Curr Sci 110:1939–1946. https://doi.org/10.18520/cs/v110/i10/1939-1946. (PMID: 10.18520/cs/v110/i10/1939-1946)
Ramachandran G (1967) Rainfall distribution in India in relation to latitude, longitude and elevation. MAUSAM 18:227–232. (PMID: 10.54302/mausam.v18i2.4443)
Rayadurgam HM (2021) Sub-division level temperature patterns and trends across east-coast industrial corridor. Research Square, India.
Rayadurgam HM, Rao P (2021) Spatio-temporal rainfall patterns and trends (1901–2015) across Visakhapatnam-Chennai Industrial Corridor, India. Theor Appl Climatol 144:1141–1159. https://doi.org/10.1007/s00704-021-03587-z. (PMID: 10.1007/s00704-021-03587-z)
Reay D (2019) Climate-smart tea. In: Climate-smart food. Springer International Publishing, pp 35–47. (PMID: 10.1007/978-3-030-18206-9_4)
Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32(1):91–102. https://doi.org/10.1016/j.eja.2009.06.003. (PMID: 10.1016/j.eja.2009.06.003)
Rivera JA, Arnould G (2020) Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: climatic features and long-term trends (1901–2014). Atmos Res 241:104953. https://doi.org/10.1016/j.atmosres.2020.104953. (PMID: 10.1016/j.atmosres.2020.104953)
Roy S, Barooah AK, Ahmed KZ et al (2020) Impact of climate change on tea pest status in northeast India and effective plans for mitigation. Acta Ecol Sin 40(6):432–442. https://doi.org/10.1016/J.CHNAES.2019.08.003. (PMID: 10.1016/J.CHNAES.2019.08.003)
Ruosteenoja K, Räisänen P, Devraj S et al (2019) Future changes in incident surface solar radiation and contributing factors in India in CMIP5 climate model simulations. J Appl Meteorol Climatol 58:19–35. https://doi.org/10.1175/JAMC-D-18-0013.1. (PMID: 10.1175/JAMC-D-18-0013.1)
Sapkota TB, Vetter SH, Jat ML et al (2019) Cost-effective opportunities for climate change mitigation in Indian agriculture. Sci Total Environ 655:1342–1354. https://doi.org/10.1016/j.scitotenv.2018.11.225. (PMID: 10.1016/j.scitotenv.2018.11.225)
Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci U S A 106(37):15594–15598. https://doi.org/10.1073/pnas.0906865106. (PMID: 10.1073/pnas.0906865106)
Sen AR, Biswas AK, Sanyal DK (1966) The influence of climatic factors on the yield of tea in the Assam Valley. J Appl Meteorol 5:789–800. (PMID: 10.1175/1520-0450(1966)005<0789:TIOCFO>2.0.CO;2)
Shreve F (1924) Soil temperature as influenced by altitude and slope exposure. Ecology 5(2):128–136. https://doi.org/10.2307/1929010. (PMID: 10.2307/1929010)
Shukla P, Skea J, Buendia E et al (2019) IPCC, 2019: climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change (IPCC).
Singh RB, Grover A, Zhan J (2014) Inter-seasonal variations of surface temperature in the urbanized environment of Delhi using landsat thermal data. Energies 7(3):1811–1828. https://doi.org/10.3390/en7031811. (PMID: 10.3390/en7031811)
Squire BYGR (1979) Weather, physiology and seasonality of tea (Camellia sijvensis) yields in Malawi. Exp Agric 15(4):321–330. (PMID: 10.1017/S0014479700012953)
Sreelatha K, Anand Raj P (2019) Ranking of CMIP5-based global climate models using standard performance metrics for Telangana region in the southern part of India. ISH J Hydraul Eng 27:556–565. https://doi.org/10.1080/09715010.2019.1634648. (PMID: 10.1080/09715010.2019.1634648)
Stampone M, Hartter J, Chapman C, Ryan S (2011) Trends and variability in localized precipitation around Kibale National Park, Uganda, Africa. Res J Environ Earth Sci 3.
Subash N, Sikka AK (2014) Trend analysis of rainfall and temperature and its relationship over India. Theor Appl Climatol 117:449–462. https://doi.org/10.1007/s00704-013-1015-9. (PMID: 10.1007/s00704-013-1015-9)
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1. (PMID: 10.1175/BAMS-D-11-00094.1)
Tea Board Of India (1995) Techno-economic survey of Dooars tea industry.
Tea-Board, ISRO (2016) Tea garden atlas Jalpaiguri District. West Bengal.
Wagholikar NK, Sinha Ray KC, Sen PN, Pradeep Kumar P (2014) Trends in seasonal temperatures over the Indian region. J Earth Syst Sci 123:673–687. https://doi.org/10.1007/s12040-014-0433-0. (PMID: 10.1007/s12040-014-0433-0)
Watanabe M, Suzuki T, O’Ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Climate 23:6312–6335. https://doi.org/10.1175/2010JCLI3679.1. (PMID: 10.1175/2010JCLI3679.1)
Wetterhall F, Pappenberger F, He Y et al (2012) Conditioning model output statistics of regional climate model precipitation on circulation patterns. Nonlinear Processes Geophys 19(6):623–633. https://doi.org/10.5194/npg-19-623-2012. (PMID: 10.5194/npg-19-623-2012)
Wijeratne MA (1996) Vulnerability of Sri Lanka tea production. Water Air Soil Pollut 92:87–94. https://doi.org/10.1007/BF00175555. (PMID: 10.1007/BF00175555)
Wijeratne MA, Anandacoomaraswamy A, Amarathunga MKSLD et al (2007) Assessment of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka. J Natl Sci Found Sri Lanka 35:119–126. https://doi.org/10.4038/jnsfsr.v35i2.3676. (PMID: 10.4038/jnsfsr.v35i2.3676)
Wong PP, Lai P-C, Hart M (2016) Microclimate variation of urban heat in a small community. Procedia Environ Sci 36:180. https://doi.org/10.1016/j.proenv.2016.09.030. (PMID: 10.1016/j.proenv.2016.09.030)
Xu Z, Tang Y, Connor T et al (2017) Climate variability and trends at a national scale. Sci Rep 7:3258. https://doi.org/10.1038/s41598-017-03297-5. (PMID: 10.1038/s41598-017-03297-5)
Zhan MJ, Xia L, Zhan L, Wang Y (2020) Evaluation and analysis of soil temperature data over Poyang Lake Basin, China. Adv Meteorol:8839111. https://doi.org/10.1155/2020/8839111.
معلومات مُعتمدة: 201819-SVSGC-2018-19-GE-WES-4093 University Grants Commission
فهرسة مساهمة: Keywords: Atmospheric variable; Climate model projections; Panel regression; Soil temperature; Sub-regional variation; Tea yield
المشرفين على المادة: 0 (Soil)
0 (Tea)
تواريخ الأحداث: Date Created: 20230721 Date Completed: 20230915 Latest Revision: 20230915
رمز التحديث: 20230915
DOI: 10.1007/s00484-023-02521-4
PMID: 37479848
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1254
DOI:10.1007/s00484-023-02521-4