دورية أكاديمية

Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine.

التفاصيل البيبلوغرافية
العنوان: Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine.
المؤلفون: Las Heras M; Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile., Szenfeld B; Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile., Ballout RA; Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, 75235, USA., Buratti E; Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy., Zanlungo S; Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330033, Chile., Dardis A; Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100, Udine, Italy., Klein AD; Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile. andresklein@udd.cl.
المصدر: NPJ genomic medicine [NPJ Genom Med] 2023 Aug 11; Vol. 8 (1), pp. 21. Date of Electronic Publication: 2023 Aug 11.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Nature in partnership with the Center of Excellence in Genomic Medicine Research at King Abdulaziz University Country of Publication: England NLM ID: 101685193 Publication Model: Electronic Cited Medium: Internet ISSN: 2056-7944 (Electronic) Linking ISSN: 20567944 NLM ISO Abbreviation: NPJ Genom Med Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: 2016- : [London] : Springer Nature in partnership with the Center of Excellence in Genomic Medicine Research at King Abdulaziz University
Original Publication: [London] : Nature Publishing Group, published in partnership with Center of Excellence in Genomic Medicine Research, [2016]-
مستخلص: Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.
(© 2023. Springer Nature Limited and Centre of Excellence in Genomic Medicine Research, King Abdulaziz University.)
References: Platt, F. M., D’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018). (PMID: 3027546910.1038/s41572-018-0025-4)
Ballout, R. A. Niemann-Pick disease type C (NPC). Genetic Syndromes https://doi.org/10.1007/978-3-319-66816-1_1339-1 (2021).
Parenti, G., Andria, G. & Ballabio, A. Lysosomal storage diseases: from pathophysiology to therapy. Annu. Rev. Med. 66, 471–486 (2015). (PMID: 2558765810.1146/annurev-med-122313-085916)
Devlin, C. et al. Improvement in lipid and protein trafficking in Niemann-Pick C1 cells by correction of a secondary enzyme defect. Traffic 11, 601–615 (2010). (PMID: 20412078300073710.1111/j.1600-0854.2010.01046.x)
Gieselmann, V. What can cell biology tell us about heterogeneity in lysosomal storage diseases? Acta Paediatr. Suppl. 94, 80–86 (2005). (PMID: 1589571710.1111/j.1651-2227.2005.tb02118.x)
Beck, M. Variable clinical presentation in lysosomal storage disorders. J. Inherit. Metab. Dis. 24, 47–51 (2001). (PMID: 1175867810.1023/A:1012463605992)
Carstea, E. D. et al. Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science (1979) 277, 228–231 (1997).
Naureckiene, S. et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290, 2298–2301 (2000). (PMID: 1112514110.1126/science.290.5500.2298)
Wraith, J. E. et al. Recommendations on the diagnosis and management of Niemann-Pick disease type C. Mol. Genet. Metab. 98, 152–165 (2009). (PMID: 1964767210.1016/j.ymgme.2009.06.008)
Jiang, X. & Ory, D. S. Advancing diagnosis and treatment of Niemann-Pick C disease through biomarker discovery. Explor. Neuroprotective Ther. 1, 146–158 (2021). (PMID: 35356760896379110.37349/ent.2021.00012)
Labrecque, M., Touma, L., Bhérer, C., Duquette, A. & Tétreault, M. Estimated prevalence of Niemann-Pick type C disease in Quebec. Sci. Rep. 11, 22621 (2021). (PMID: 34799641860493310.1038/s41598-021-01966-0)
Burton, B. K. et al. Estimating the prevalence of Niemann-Pick disease type C (NPC) in the United States. Mol. Genet. Metab. 134, 182–187 (2021). (PMID: 3430499210.1016/j.ymgme.2021.06.011)
Wassif, C. A. et al. High incidence of unrecognized visceral/neurological late-onset Niemann-Pick disease, type C1, predicted by analysis of massively parallel sequencing data sets. Genet. Med. 18, 41–48 (2016). (PMID: 2576421210.1038/gim.2015.25)
Davies, J. P., Chen, F. W. & Ioannou, Y. A. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298 (2000). (PMID: 1112514010.1126/science.290.5500.2295)
Kuwabara, P. E. & Labouesse, M. The sterol-sensing domain: multiple families, a unique role? Trends Genet. 18, 193–201 (2002). (PMID: 1193202010.1016/S0168-9525(02)02640-9)
Li, X. et al. 3.3 Å structure of Niemann-Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport. Proc. Natl Acad. Sci. USA 114, 9116–9121 (2017). (PMID: 28784760557684610.1073/pnas.1711716114)
Infante, R. E. et al. Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J. Biol. Chem. 283, 1064–1075 (2008). (PMID: 1798907210.1074/jbc.M707944200)
Kwon, H. J. et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137, 1213–1224 (2009). (PMID: 19563754273965810.1016/j.cell.2009.03.049)
Xu, S., Benoff, B., Liou, H. L., Lobel, P. & Stock, A. M. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J. Biol. Chem. 282, 23525–23531 (2007). (PMID: 1757335210.1074/jbc.M703848200)
Vance, J. E. Lipid imbalance in the neurological disorder, Niemann-Pick C disease. FEBS Lett. 580, 5518–5524 (2006). (PMID: 1679701010.1016/j.febslet.2006.06.008)
Winkler, M. B. L. et al. Structural insight into eukaryotic sterol transport through Niemann-Pick type C proteins. Cell 179, 485–497.e18 (2019). (PMID: 3154326610.1016/j.cell.2019.08.038)
Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14, 1247–1255 (2008). (PMID: 1895335110.1038/nm.1876)
Malathi, K. et al. Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution. J. Cell Biol. 164, 547–556 (2004). (PMID: 14970192217197810.1083/jcb.200310046)
Liu, B. et al. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc. Natl Acad. Sci. USA 106, 2377–2382 (2009). (PMID: 19171898265016410.1073/pnas.0810895106)
Lopez, M. E., Klein, A. D., Hong, J., Dimbil, U. J. & Scott, M. P. Neuronal and epithelial cell rescue resolves chronic systemic inflammation in the lipid storage disorder Niemann-Pick C. Hum. Mol. Genet. 21, 2946–2960 (2012). (PMID: 22493001337324210.1093/hmg/dds126)
Walkley, S. U. & Suzuki, K. Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim. Biophys. Acta 1685, 48–62 (2004). (PMID: 1546542610.1016/j.bbalip.2004.08.011)
Lopez, M. E., Klein, A. D., Dimbil, U. J. & Scott, M. P. Anatomically defined neuron-based rescue of neurodegenerative Niemann-Pick type C disorder. J. Neurosci. 31, 4367–4378 (2011). (PMID: 21430138307164710.1523/JNEUROSCI.5981-10.2011)
Vanier, M. T. & Millat, G. Niemann-Pick disease type C. Clin. Genet. 64, 269–281 (2003). (PMID: 1297472910.1034/j.1399-0004.2003.00147.x)
Pallottini, V. & Pfrieger, F. W. Understanding and treating niemann–pick type c disease: Models matter. Int. J. Mol. Sci. 21, 1–37 (2020). (PMID: 10.3390/ijms21238979)
Vanier, M. Niemann-Pick disease type C. Orphanet J. Rare Dis. 5, 16 (2010). (PMID: 20525256290243210.1186/1750-1172-5-16)
Yu, T. & Lieberman, A. P. Npc1 acting in neurons and glia is essential for the formation and maintenance of CNS myelin. PLoS Genet. 9, e1003462 (2013). (PMID: 23593041362376010.1371/journal.pgen.1003462)
Vanier, M. T. Complex lipid trafficking in Niemann-Pick disease type C. J. Inherit. Metab. Dis. 38, 187–199 (2015). (PMID: 2542528310.1007/s10545-014-9794-4)
Evans, W. et al. International consensus on clinical severity scale use in evaluating Niemann-Pick disease Type C in paediatric and adult patients: results from a Delphi Study. Orphanet J. Rare Dis. 16, 482 (2021). (PMID: 34794481860078610.1186/s13023-021-02115-6)
Vanier, M. T. et al. Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim. Biophys. Acta 1096, 328–337 (1991). (PMID: 206510410.1016/0925-4439(91)90069-L)
Bolton, S. C. et al. Clinical disease characteristics of patients with Niemann-Pick Disease Type C: findings from the International Niemann-Pick Disease Registry (INPDR). Orphanet J. Rare Dis. 17, 51 (2022). (PMID: 35164809884286110.1186/s13023-022-02200-4)
Spiegel, R. et al. The clinical spectrum of fetal Niemann-Pick type C. Am. J. Med. Genet. A 149A, 446–450 (2009). (PMID: 1920617910.1002/ajmg.a.32642)
Kelly, D. A., Portmann, B., Mowat, A. P., Sherlock, S. & Lake, B. D. Niemann-Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J. Pediatr. 123, 242–247 (1993). (PMID: 768842210.1016/S0022-3476(05)81695-6)
Yerushalmi, B. et al. Niemann-Pick disease type C in neonatal cholestasis at a North American Center. J. Pediatr. Gastroenterol. Nutr. 35, 44–50 (2002). (PMID: 1214280910.1097/00005176-200207000-00011)
Bjurulf, B. et al. Niemann-Pick disease type C2 presenting as fatal pulmonary alveolar lipoproteinosis: morphological findings in lung and nervous tissue. Med. Sci. Monit. 14, CS71–CS75 (2008). (PMID: 18668002)
Griese, M. et al. Respiratory disease in Niemann-Pick type C2 is caused by pulmonary alveolar proteinosis. Clin. Genet. 77, 119–130 (2010). (PMID: 2000245010.1111/j.1399-0004.2009.01325.x)
Yilmaz, B. S., Baruteau, J., Rahim, A. A. & Gissen, P. Clinical and molecular features of early infantile niemann pick type c disease. Int. J. Mol. Sci. 21, 1–34 (2020).
Soliani, L. et al. Neuropsychological and behavioral disorders as presentation symptoms in two brothers with early-infantile Niemann-Pick type C. Acta Biomed. 91, 1–8 (2020).
Lee, S. Y. et al. Two siblings with adolescent/adult onset Niemann-Pick disease type C in Korea. J. Korean Med. Sci. 31, 1168–1172 (2016). (PMID: 27366019490101310.3346/jkms.2016.31.7.1168)
Maubert, A., Hanon, C. & Metton, J. P. Adult onset Niemann-Pick type C disease and psychosis: literature review. Encephale 39, 315–319 (2013). (PMID: 2392806310.1016/j.encep.2013.04.013)
Porter, F. D. et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci. Transl. Med. 2, 56ra81 (2010). (PMID: 21048217317013910.1126/scitranslmed.3001417)
Sitarska, D. & Ługowska, A. Laboratory diagnosis of the Niemann-Pick type C disease: an inherited neurodegenerative disorder of cholesterol metabolism. Metab. Brain Dis. 34, 1253–1260 (2019). (PMID: 31197681674438410.1007/s11011-019-00445-w)
Kaminski, W. E. et al. Identification of novel mutations in the NPC1 gene in German patients with Niemann - Pick C disease. J. Inherit. Metab. Dis. 25, 385–389 (2002). (PMID: 1240818810.1023/A:1020151801060)
Fancello, T. et al. Molecular analysis of NPC1 and NPC2 gene in 34 Niemann-Pick C Italian Patients: Identification and structural modeling of novel mutations. Neurogenetics 10, 229–239 (2009). (PMID: 1925293510.1007/s10048-009-0175-3)
Dardis, A. et al. Molecular genetics of niemann–pick type c disease in italy: An update on 105 patients and description of 18 NPC1 novel variants. J. Clin. Med. 9, 1–21 (2020). (PMID: 10.3390/jcm9030679)
Shammas, H., Kuech, E. M., Rizk, S., Das, A. M. & Naim, H. Y. Different Niemann-Pick C1 genotypes generate protein phenotypes that vary in their intracellular processing, trafficking and localization. Sci. Rep. 9, 1–12 (2019). (PMID: 10.1038/s41598-019-41707-y)
Brogden, G. et al. Different trafficking phenotypes of Niemann-Pick C1 gene mutations correlate with various alterations in lipid storage, membrane composition and miglustat amenability. Int. J. Mol. Sci. 21, 1–13 (2020). (PMID: 10.3390/ijms21062101)
Walterfang, M. et al. Gender dimorphism in siblings with schizophrenia-like psychosis due to Niemann-Pick disease type C. J. Inherit. Metab. Dis. 32, S221–S226 (2009). (PMID: 1960971310.1007/s10545-009-1173-1)
Mendrek, A. & Mancini-Marïe, A. Sex/gender differences in the brain and cognition in schizophrenia. Neurosci. Biobehav. Rev. 67, 57–78 (2016). (PMID: 2674385910.1016/j.neubiorev.2015.10.013)
Ebert, A. & Bär, K. J. Emil Kraepelin: a pioneer of scientific understanding of psychiatry and psychopharmacology. Indian J. Psychiatry 52, 191–192 (2010). (PMID: 20838510292789210.4103/0019-5545.64591)
Hwang, W. J., Lee, T. Y., Kim, N. S. & Kwon, J. S. The role of estrogen receptors and their signaling across psychiatric disorders. Int. J. Mol. Sci. 22, 1–21 (2020). (PMID: 10.3390/ijms22010373)
Ho, T. C. et al. Sex differences in myelin content of white matter tracts in adolescents with depression. Neuropsychopharmacology 46, 2295–2303 (2021). (PMID: 34215842858097610.1038/s41386-021-01078-3)
Benussi, A. et al. Phenotypic heterogeneity of Niemann–Pick disease type C in monozygotic twins. J. Neurol. 262, 642–647 (2014). (PMID: 2553690510.1007/s00415-014-7619-x)
Klllç Ylldlrlm, G., Yarar, C., Aeker Yllmaz, B. & Ceylaner, S. Niemann-Pick type C disease with a novel intronic mutation: three Turkish cases from the same family. J. Pediatr. Endocrinol. Metab. 35, 535–541 (2021).
Alavi, A., Nafissi, S., Shamshiri, H., Nejad, M. M. & Elahi, E. Identification of mutation in NPC2 by exome sequencing results in diagnosis of Niemann-Pick disease type C. Mol. Genet. Metab. 110, 139–144 (2013). (PMID: 2379130910.1016/j.ymgme.2013.05.019)
Xiong, H. et al. Genotype/phenotype of 6 Chinese cases with Niemann-Pick disease type C. Gene 498, 332–335 (2012). (PMID: 2232653010.1016/j.gene.2012.01.026)
Riordan, J. D. & Nadeau, J. H. From peas to disease: modifier genes, network resilience, and the genetics of health. Am. J. Hum. Genet. 101, 177 (2017). (PMID: 28777930554438310.1016/j.ajhg.2017.06.004)
Loftus, S. K. et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277, 232–235 (1997). (PMID: 921185010.1126/science.277.5323.232)
Miyawaki, S., Mitsuoka, S., Sakiyama, T. & Kitagawa, T. Sphingomyelinosis, a new mutation in the mouse: a model of Niemann-Pick disease in humans. J. Hered. 73, 257–263 (1982). (PMID: 720202510.1093/oxfordjournals.jhered.a109635)
Xie, X. et al. Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice. Proc. Natl Acad. Sci. USA 108, 15330–15335 (2011). (PMID: 21896731317467710.1073/pnas.1112751108)
Gómez-Grau, M. et al. New murine Niemann-Pick type C models bearing a pseudoexon-generating mutation recapitulate the main neurobehavioural and molecular features of the disease. Sci. Rep. 7, 41931 (2017). (PMID: 28167839529458510.1038/srep41931)
Maue, R. A. et al. A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum. Mol. Genet. 21, 730–750 (2012). (PMID: 2204895810.1093/hmg/ddr505)
Praggastis, M. et al. A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J. Neurosci. 35, 8091–8106 (2015). (PMID: 26019327444453510.1523/JNEUROSCI.4173-14.2015)
Elrick, M. J. et al. Conditional Niemann-Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration. Hum. Mol. Genet. 19, 837 (2010). (PMID: 2000771810.1093/hmg/ddp552)
Miyawaki, S., Yoshida, H., Mitsuoka, S., Enomoto, H. & Ikehara, S. A mouse model for Niemann-Pick disease. Influence of genetic background on disease expression in spm/spm mice. J. Hered. 77, 379–384 (1986). (PMID: 355916410.1093/oxfordjournals.jhered.a110265)
Zhang, J. & Erickson, R. P. A modifier of niemann Pick C 1 maps to mouse chromosome 19. Mamm. Genome 11, 69–71 (2000). (PMID: 1060299610.1007/s003350010013)
Parra, J. et al. Npc1 deficiency in the C57BL/6J genetic background enhances Niemann-Pick disease type C spleen pathology. Biochem. Biophys. Res. Commun. 413, 400–406 (2011). (PMID: 2191097510.1016/j.bbrc.2011.08.096)
Rodriguez-Gil, J. L. et al. Genetic background modifies phenotypic severity and longevity in a mouse model of Niemann-Pick disease type C1. Dis. Model. Mech. 13, dmm042614 (2020). (PMID: 31996359707506910.1242/dmm.042614)
Olguín, V. et al. Genetic background matters: population-based studies in model organisms for translational research. Int. J. Mol. Sci. 23, 7570 (2022). (PMID: 35886916931659810.3390/ijms23147570)
Te Vruchte, D. et al. Relative acidic compartment volume as a lysosomal storage disorder-associated biomarker. J. Clin. Investig. 124, 1320–1328 (2014). (PMID: 10.1172/JCI72835)
Baxter, L. L. et al. Correlation of age of onset and clinical severity in Niemann-Pick disease type C1 with lysosomal abnormalities and gene expression. Sci. Rep. 12, 2162 (2022). (PMID: 35140266882876510.1038/s41598-022-06112-y)
Imrie, J., Heptinstall, L., Knight, S. & Strong, K. Observational cohort study of the natural history of Niemann-Pick disease type C in the UK: a 5-year update from the UK clinical database. BMC Neurol. 15, 257 (2015). (PMID: 26666848467852810.1186/s12883-015-0511-1)
Platt, F. M., Neises, G. R., Dwek, R. A. & Butters, T. D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269, 8362–8365 (1994). (PMID: 813255910.1016/S0021-9258(17)37202-2)
Ory, D. S. et al. Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1–2 trial. Lancet 390, 1758–1768 (2017). (PMID: 28803710617647910.1016/S0140-6736(17)31465-4)
Hastings, C., Liu, B., Hurst, B., Cox, G. F. & Hrynkow, S. Intravenous 2-hydroxypropyl-β-cyclodextrin (Trappsol® Cyclo TM ) demonstrates biological activity and impacts cholesterol metabolism in the central nervous system and peripheral tissues in adult subjects with Niemann-Pick Disease Type C1: results of a phase 1 trial. Mol. Genet. Metab. 137, 309–319 (2022). (PMID: 3627979510.1016/j.ymgme.2022.10.004)
Pipalia, N. H. et al. Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. Proc. Natl Acad. Sci. USA 108, 5620–5625 (2011). (PMID: 21436030307840110.1073/pnas.1014890108)
Zervas, M., Somers, K. L., Thrall, M. A. & Walkley, S. U. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr. Biol. 11, 1283–1287 (2001). (PMID: 1152574410.1016/S0960-9822(01)00396-7)
Pineda, M. et al. Clinical experience with miglustat therapy in pediatric patients with Niemann-Pick disease type C: a case series. Mol. Genet. Metab. 99, 358–366 (2010). (PMID: 2005655910.1016/j.ymgme.2009.11.007)
Patterson, M. C. et al. Long-term survival outcomes of patients with Niemann-Pick disease type C receiving miglustat treatment: a large retrospective observational study. J. Inherit. Metab. Dis. 43, 1060–1069 (2020). (PMID: 32324281754071610.1002/jimd.12245)
Wraith, J. E. et al. Miglustat in adult and juvenile patients with Niemann-Pick disease type C: long-term data from a clinical trial. Mol. Genet. Metab. 99, 351–357 (2010). (PMID: 2004536610.1016/j.ymgme.2009.12.006)
Champion, H. et al. Dietary modifications in patients receiving miglustat. J. Inherit. Metab. Dis. 33, 3 (2010). (PMID: 10.1007/s10545-010-9193-4)
Platt, F. M. & Jeyakumar, M. Substrate reduction therapy. Acta Paediatr. 97, 88–93 (2008). (PMID: 1833919610.1111/j.1651-2227.2008.00656.x)
Lyseng-Williamson, K. A. Miglustat: a review of its use in Niemann-Pick disease type C. Drugs 74, 61–74 (2014). (PMID: 2433808410.1007/s40265-013-0164-6)
Wang, H., Shen, Y., Zhao, L. & Ye, Y. 1-Deoxynojirimycin and its derivatives: a mini review of the literature. Curr. Med. Chem. 28, 628–643 (2021). (PMID: 3194284410.2174/0929867327666200114112728)
Abi-mosleh, L., Infante, R. E., Radhakrishnan, A., Goldstein, J. L. & Brown, M. S. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proc. Natl Acad. Sci. USA, https://doi.org/10.1073/pnas.0910916106 (2009).
Davidson, C. D. et al. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS ONE 4, e6951 (2009). (PMID: 19750228273662210.1371/journal.pone.0006951)
Hastings, C. et al. Expanded access with intravenous hydroxypropyl-β-cyclodextrin to treat children and young adults with Niemann-Pick disease type C1: a case report analysis. Orphanet J. Rare Dis. 14, 228 (2019). (PMID: 31639011680566710.1186/s13023-019-1207-1)
Munkacsi, A. B. et al. An ‘exacerbate-reverse’ strategy in yeast identifies histone deacetylase inhibition as a correction for cholesterol and sphingolipid transport defects in human Niemann-Pick type C disease. J. Biol. Chem. 286, 23842–23851 (2011). (PMID: 21489983312916610.1074/jbc.M111.227645)
Munkacsi, A. B. et al. Normalization of hepatic homeostasis in the Npc1nmf164 mouse model of niemann-pick type C disease treated with the histone deacetylase inhibitor vorinostat. J. Biol. Chem. 292, 4395–4410 (2017). (PMID: 2803145810.1074/jbc.M116.770578)
Pipalia, N. H. et al. Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells. J. Lipid Res. 58, 695–708 (2017). (PMID: 28193631539274510.1194/jlr.M072140)
Pal, D., Sahu, P., Mishra, A., Hagelgans, A. & Sukocheva, O. Histone deacetylase inhibitors as cognitive enhancers and modifiers of mood and behavior. Curr. Drug Targets 24, (2022).
Bachy, E. et al. Romidepsin plus CHOP versus CHOP in patients with previously untreated peripheral T-cell lymphoma: results of the Ro-CHOP phase III study (Conducted by LYSA). J. Clin. Oncol. 40, 242–251 (2022). (PMID: 3484340610.1200/JCO.21.01815)
Hargitai, J. et al. Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem. Biophys. Res. Commun. 307, 689–695 (2003). (PMID: 1289327910.1016/S0006-291X(03)01254-3)
Mengel, E. et al. Efficacy and safety of arimoclomol in Niemann-Pick disease type C: Results from a double-blind, randomised, of a novel treatment. J. Inherit. Metab. Dis. 44, 1463–1480 (2021). (PMID: 34418116929301410.1002/jimd.12428)
Kirkegaard, T. et al. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci. Transl. Med. 8, 355ra118 (2016). (PMID: 27605553682153310.1126/scitranslmed.aad9823)
Gray, J. et al. Heat shock protein amplification improves cerebellar myelination in the Npc1nih mouse model. EBioMedicine 86, 104374 (2022). (PMID: 36455410971328210.1016/j.ebiom.2022.104374)
Pipalia, N. H. et al. HSP90 inhibitors reduce cholesterol storage in Niemann-Pick type C1 mutant fibroblasts. J. Lipid Res. 62, 100114 (2021). (PMID: 34481829851760510.1016/j.jlr.2021.100114)
Mengel, E. et al. Efficacy and safety of arimoclomol in Niemann-Pick disease type C: results from a double-blind, randomised, placebo-controlled, multinational phase 2/3 trial of a novel treatment. J. Inherit. Metab. Dis. 44, 1463–1480 (2021). (PMID: 34418116929301410.1002/jimd.12428)
Medina, D. L. & Ballabio, A. Lysosomal calcium regulates autophagy. Autophagy 11, 970–971 (2015). (PMID: 26000950450274810.1080/15548627.2015.1047130)
di Paola, S., Scotto-Rosato, A. & Medina, D. L. TRPML1: the Ca(2+)retaker of the lysosome. Cell Calcium 69, 112–121 (2018). (PMID: 2868972910.1016/j.ceca.2017.06.006)
Waller-Evans, H. & Lloyd-Evans, E. Regulation of TRPML1 function. Biochem. Soc. Trans. 43, 442–446 (2015). (PMID: 2600918810.1042/BST20140311)
Zhong, X. Z. et al. BK channel agonist represents a potential therapeutic approach for lysosomal storage diseases. Sci. Rep. 6, 33684 (2016). (PMID: 27670435503738510.1038/srep33684)
Scotto Rosato, A. et al. TPC2 rescues lysosomal storage in mucolipidosis type IV, Niemann–Pick type C1, and Batten disease. EMBO Mol. Med. 14, e15377 (2022). (PMID: 35929194944960010.15252/emmm.202115377)
Alvarez, A. R. et al. Imatinib therapy blocks cerebellar apoptosis and improves neurological symptoms in a mouse model of Niemann-Pick type C disease. FASEB J. 22, 3617–3627 (2008). (PMID: 1859136810.1096/fj.07-102715)
Klein, A. D., Alvarez, A. & Zanlungo, S. The unique case of the Niemann-Pick type C cholesterol storage disorder. Pediatr. Endocrinol. Rev. 12, 166–175 (2014). (PMID: 25345099)
Yañez, M. J. et al. Finding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: Opportunities for shared therapeutic interventions. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165875 (2020). (PMID: 3252263110.1016/j.bbadis.2020.165875)
Yañez, M. J. et al. c-Abl activates RIPK3 signaling in Gaucher disease. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166089 (2021). (PMID: 3354974510.1016/j.bbadis.2021.166089)
Contreras, P. S. et al. Neuronal gene repression in Niemann-Pick type C models is mediated by the c-Abl/HDAC2 signaling pathway. Biochim. Biophys. Acta 1859, 269–279 (2016). (PMID: 2660310210.1016/j.bbagrm.2015.11.006)
Contreras, P. S. et al. c-Abl inhibition activates TFEB and promotes cellular clearance in a lysosomal disorder. iScience 23, 101691 (2020). (PMID: 33163944760748510.1016/j.isci.2020.101691)
Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020). (PMID: 3176800510.1038/s41580-019-0185-4)
Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020). (PMID: 3173271710.1038/s41580-019-0180-9)
Höglinger, D. et al. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat. Commun. 10, 4276 (2019). (PMID: 31537798675306410.1038/s41467-019-12152-2)
Enrich, C., Rentero, C., Grewal, T., Futter, C. E. & Eden, E. R. Cholesterol overload: contact sites to the rescue! Contact 2, 251525641989350 (2019). (PMID: 10.1177/2515256419893507)
Singhal, A., Szente, L., Hildreth, J. E. K. & Song, B. Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann-Pick C1 mutant cell via lysosome-associated membrane protein 1. Cell Death Dis 9, 1019 (2018). (PMID: 30282967617047710.1038/s41419-018-1056-1)
Becker-Bense, S. et al. Acetyl-DL-leucine in cerebellar ataxia ([18F]-FDG-PET study): how does a cerebellar disorder influence cortical sensorimotor networks? J. Neurol. 270, 44–56 (2023). (PMID: 3587687610.1007/s00415-022-11252-2)
Günther, L. et al. N-acetyl-l-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus. PLoS ONE 10, e0120891 (2015). (PMID: 25803613437242010.1371/journal.pone.0120891)
Kaya, E. et al. Acetyl-leucine slows disease progression in lysosomal storage disorders. Brain Commun. 3, fcaa148 (2020). (PMID: 33738443795438210.1093/braincomms/fcaa148)
Bremova, T. et al. Acetyl-dl-leucine in Niemann-Pick type C: a case series. Neurology 85, 1368–1375 (2015). (PMID: 2640058010.1212/WNL.0000000000002041)
Bremova-Ertl, T. et al. Efficacy and safety of N-acetyl-L-leucine in Niemann-Pick disease type C. J. Neurol. 269, 1651–1662 (2022). (PMID: 3438774010.1007/s00415-021-10717-0)
Fields, T. et al. N-acetyl-L-leucine for Niemann-Pick type C: a multinational double-blind randomized placebo-controlled crossover study. Trials 24, 361 (2023). (PMID: 372484941022622110.1186/s13063-023-07399-6)
Garver, W. S. et al. The National Niemann-Pick type C1 disease database: correlation of lipid profiles, mutations, and biochemical phenotypes. J. Lipid Res. 51, 406–415 (2010). (PMID: 19744920280324310.1194/jlr.P000331)
Cloughesy, T. F. et al. Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 5, 0139–0151 (2008). (PMID: 10.1371/journal.pmed.0050008)
Elrick, M. J., Yu, T., Chung, C. & Lieberman, A. P. Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease. Hum. Mol. Genet. 21, 4876–4887 (2012). (PMID: 22872701360748010.1093/hmg/dds324)
Paulina Ordonez, M. et al. Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1. Hum. Mol. Genet. 21, 2651–2662 (2012). (PMID: 22437840336333910.1093/hmg/dds090)
Maetzel, D. et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Rep. 2, 866–880 (2014). (PMID: 10.1016/j.stemcr.2014.03.014)
Calderón, J. F. & Klein, A. D. Controversies on the potential therapeutic use of rapamycin for treating a lysosomal cholesterol storage disease. Mol. Genet. Metab. Rep. 15, 135–136 (2018). (PMID: 300233076047216)
Bianconi, S. E. et al. Evaluation of age of death in Niemann-Pick disease, type C: utility of disease support group websites to understand natural history. Mol. Genet. Metab. 126, 466–469 (2019). (PMID: 30850267653512410.1016/j.ymgme.2019.02.004)
Cougnoux, A. et al. Maternal immune activation modifies the course of Niemann- Pick disease, type C1 in a gender specific manner. Mol. Genet. Metab. 129, 165–170 (2020). (PMID: 3166855510.1016/j.ymgme.2019.10.004)
Võikar, V., Rauvala, H. & Ikonen, E. Cognitive deficit and development of motor impairment in a mouse model of Niemann-Pick type C disease. Behav. Brain Res. 132, 1–10 (2002). (PMID: 1185385210.1016/S0166-4328(01)00380-1)
Holzmann, C., Witt, M., Rolfs, A., Antipova, V. & Wree, A. Gender‐specific effects of two treatment strategies in a mouse model of niemann‐pick disease type c1. Int. J. Mol. Sci. 22, 1–32 (2021). (PMID: 10.3390/ijms22052539)
Liu, B., Li, H., Repa, J. J., Turley, S. D. & Dietschy, J. M. Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J. Lipid Res. 49, 663–669 (2008). (PMID: 1807782810.1194/jlr.M700525-JLR200)
Aavani, T., Rana, S. A., Hawkes, R. & Pittman, Q. J. Maternal immune activation produces cerebellar hyperplasia and alterations in motor and social behaviors in male and female mice. Cerebellum 14, 491–505 (2015). (PMID: 2586381210.1007/s12311-015-0669-5)
Cougnoux, A. et al. Microglia activation in Niemann-Pick disease, type C1 is amendable to therapeutic intervention. Hum. Mol. Genet. 27, 2076–2089 (2018). (PMID: 29617956598572710.1093/hmg/ddy112)
Colombo, A. et al. Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia. Nat. Commun. 12, 1158 (2021). (PMID: 33627648790485910.1038/s41467-021-21428-5)
Lopez, M. E., Klein, A. D. & Scott, M. P. Complement is dispensable for neurodegeneration in Niemann-Pick disease type C. J. Neuroinflammation 9, 216 (2012). (PMID: 22985423351125010.1186/1742-2094-9-216)
Anthony, K. & Gallo, J. M. Aberrant RNA processing events in neurological disorders. Brain Res. 1338, 67–77 (2010). (PMID: 2022617710.1016/j.brainres.2010.03.008)
Schieweck, R., Ninkovic, J. & Kiebler, M. A. RNA-binding proteins balance brain function in health and disease. Physiol. Rev. 101, 1309–1370 (2021). (PMID: 3300098610.1152/physrev.00047.2019)
Paron, F., Dardis, A. & Buratti, E. Pre-mRNA splicing defects and RNA binding protein involvement in Niemann Pick type C disease. J. Biotechnol. 318, 20–30 (2020). (PMID: 3238745110.1016/j.jbiotec.2020.03.012)
Macías-Vidal, J., Gort, L., Lluch, M., Pineda, M. & Coll, M. J. Nonsense-mediated mRNA decay process in nine alleles of Niemann-Pick type C patients from Spain. Mol. Genet. Metab. 97, 60–64 (2009). (PMID: 1922321510.1016/j.ymgme.2009.01.007)
Tamura, H. et al. Niemann-Pick type C disease: novel NPC1 mutations and characterization of the concomitant acid sphingomyelinase deficiency. Mol. Genet. Metab. 87, 113–121 (2006). (PMID: 1614355610.1016/j.ymgme.2005.07.025)
Bychkov, I. et al. Additive effect of frequent polymorphism and rare synonymous variant alters splicing in twin patients with Niemann-Pick disease type C. Eur. J. Hum. Genet. 30, 133–136 (2022). (PMID: 3395874210.1038/s41431-021-00898-7)
Goina, E., Musco, L., Dardis, A. & Buratti, E. Assessment of the functional impact on the pre-mRNA splicing process of 28 nucleotide variants associated with Pompe disease in GAA exon 2 and their recovery using antisense technology. Hum. Mutat. 40, 2121–2130 (2019). (PMID: 3130115310.1002/humu.23867)
Zampieri, S. et al. Splicing mutations in glycogen-storage disease type II: evaluation of the full spectrum of mutations and their relation to patients’ phenotypes. Eur. J. Hum. Genet. 19, 422–431 (2011). (PMID: 2117906610.1038/ejhg.2010.188)
Pagani, F., Buratti, E., Stuani, C. & Baralle, F. E. Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J. Biol. Chem. 278, 26580–26588 (2003). (PMID: 1273262010.1074/jbc.M212813200)
Reunert, J. et al. Rapid diagnosis of 83 patients with Niemann Pick type C disease and related cholesterol transport disorders by cholestantriol screening. EBioMedicine 4, 170–175 (2015). (PMID: 26981555477607310.1016/j.ebiom.2015.12.018)
Dardis, A. & Buratti, E. Impact, characterization, and rescue of pre-mRNA splicing mutations in lysosomal storage disorders. Genes 9, 73 (2018). (PMID: 29415500585256910.3390/genes9020073)
Santos, J. I. et al. Splicing modulation as a promising therapeutic strategy for lysosomal storage disorders: the mucopolysaccharidoses example. Life 12, 608 (2022). (PMID: 35629276914682010.3390/life12050608)
Ferri, L. et al. Double-target antisense U1snRNAs correct mis-splicing due to c.639+861C>T and c.639+919G>A GLA deep intronic mutations. Mol. Ther. Nucleic Acids 5, e380 (2016). (PMID: 27779620509568710.1038/mtna.2016.88)
Matos, L. et al. Therapeutic strategies based on modified U1 snRNAs and chaperones for Sanfilippo C splicing mutations. Orphanet J. Rare Dis. 9, 180 (2014). (PMID: 25491247427980010.1186/s13023-014-0180-y)
Dufner-Almeida, L. G., do Carmo, R. T., Masotti, C. & Haddad, L. A. Understanding human DNA variants affecting pre-mRNA splicing in the NGS era. Adv. Genet. 103, 39–90 (2019). (PMID: 3090409610.1016/bs.adgen.2018.09.002)
Broeders, M. et al. A generic assay to detect aberrant ARSB splicing and mRNA degradation for the molecular diagnosis of MPS VI. Mol. Ther. Methods Clin. Dev. 19, 174–185 (2020). (PMID: 33209960764808910.1016/j.omtm.2020.09.004)
معلومات مُعتمدة: CRP/CHL22-02 International Centre for Genetic Engineering and Biotechnology (ICGEB); CRP/CHL22-02 International Centre for Genetic Engineering and Biotechnology (ICGEB); CRP/CHL22-02 International Centre for Genetic Engineering and Biotechnology (ICGEB); 1230317 Fondo Nacional de Desarrollo Científico y Tecnológico (National Fund for Scientific and Technological Development); 1230337 Fondo Nacional de Desarrollo Científico y Tecnológico (National Fund for Scientific and Technological Development)
تواريخ الأحداث: Date Created: 20230811 Latest Revision: 20231119
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10421955
DOI: 10.1038/s41525-023-00365-w
PMID: 37567876
قاعدة البيانات: MEDLINE
الوصف
تدمد:2056-7944
DOI:10.1038/s41525-023-00365-w