دورية أكاديمية

Effects of PTH on osteoblast bioenergetics in response to glucose.

التفاصيل البيبلوغرافية
العنوان: Effects of PTH on osteoblast bioenergetics in response to glucose.
المؤلفون: DeMambro VE; Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA., Tian L; Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA., Karthik V; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA., Rosen CJ; Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.; Tufts University School of Medicine, Tufts University, Boston, MA, USA.; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA., Guntur AR; Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.; Tufts University School of Medicine, Tufts University, Boston, MA, USA.; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
المصدر: Bone reports [Bone Rep] 2023 Jul 24; Vol. 19, pp. 101705. Date of Electronic Publication: 2023 Jul 24 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Elsevier Inc Country of Publication: United States NLM ID: 101646176 Publication Model: eCollection Cited Medium: Print ISSN: 2352-1872 (Print) Linking ISSN: 23521872 NLM ISO Abbreviation: Bone Rep Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Philadelphia] : Elsevier Inc., [2015]-
مستخلص: Parathyroid hormone acts through its receptor, PTHR1, expressed on osteoblasts, to control bone remodeling. Metabolic flexibility for energy generation has been demonstrated in several cell types dependent on substrate availability. Recent studies have identified a critical role for PTH in regulating glucose, fatty acid and amino acid metabolism thus stimulating both glycolysis and oxidative phosphorylation. Therefore, we postulated that PTH stimulates increased energetic output by osteoblasts either by increasing glycolysis or oxidative phosphorylation depending on substrate availability. To test this hypothesis, undifferentiated and differentiated MC3T3E1C4 calvarial pre-osteoblasts were treated with PTH to study osteoblast bioenergetics in the presence of exogenous glucose. Significant increases in glycolysis with acute ∼1 h PTH treatment with minimal effects on oxidative phosphorylation in undifferentiated MC3T3E1C4 in the presence of exogenous glucose were observed. In differentiated cells, the increased glycolysis observed with acute PTH was completely blocked by pretreatment with a Glut1 inhibitor (BAY-876) resulting in a compensatory increase in oxidative phosphorylation. We then tested the effect of PTH on the function of complexes I and II of the mitochondrial electron transport chain in the absence of glycolysis. Utilizing a novel cell plasma membrane permeability mitochondrial (PMP) assay, in combination with complex I and II specific substrates, slight but significant increases in basal and maximal oxygen consumption rates with 24 h PTH treatment in undifferentiated MC3T3E1C4 cells were noted. Taken together, our data demonstrate for the first time that PTH stimulates both increases in glycolysis and the function of the electron transport chain, particularly complexes I and II, during high energy demands in osteoblasts.
Competing Interests: The authors declare that there is no conflict of interest.
(© 2023 The Authors.)
References: Biochem Biophys Res Commun. 2018 Sep 5;503(2):737-743. (PMID: 29913143)
Cell. 2015 Jun 18;161(7):1576-1591. (PMID: 26091038)
Cell. 2017 Apr 06;169(2):258-272.e17. (PMID: 28388410)
Exp Cell Res. 1997 Jun 15;233(2):274-80. (PMID: 9194489)
EMBO J. 2011 Jun 1;30(11):2101-14. (PMID: 21468027)
Bone. 2005 Aug;37(2):148-58. (PMID: 15946907)
EMBO J. 2017 Jun 14;36(12):1688-1706. (PMID: 28465321)
Cell Signal. 2016 Mar;28(3):204-213. (PMID: 26724218)
J Biol Chem. 2005 Nov 4;280(44):37289-96. (PMID: 16147995)
Endocrinology. 2014 May;155(5):1589-95. (PMID: 24437492)
Front Physiol. 2022 Sep 23;13:992679. (PMID: 36213239)
Cell Res. 2018 Mar;28(3):281-295. (PMID: 29424373)
Stem Cells Dev. 2016 Jan 15;25(2):114-22. (PMID: 26487485)
Metabolomics. 2021 Sep 18;17(10):86. (PMID: 34537901)
Bone Rep. 2022 May 27;16:101594. (PMID: 35669927)
Nature. 2000 Nov 9;408(6809):239-47. (PMID: 11089981)
Front Physiol. 2022 Sep 14;13:997358. (PMID: 36187756)
Endocrinology. 2005 Jun;146(6):2620-8. (PMID: 15718274)
J Bone Miner Res. 2018 Jun;33(6):1052-1065. (PMID: 29342317)
Cell Metab. 2019 Apr 2;29(4):966-978.e4. (PMID: 30773468)
Mol Metab. 2022 Jun;60:101480. (PMID: 35338013)
Clin Orthop Relat Res. 1992 Aug;(281):275-94. (PMID: 1499220)
JCI Insight. 2017 Aug 17;2(16):. (PMID: 28814665)
Cold Spring Harb Perspect Med. 2018 Aug 1;8(8):. (PMID: 29358318)
FASEB J. 2019 Feb;33(2):2885-2898. (PMID: 30354669)
J Bone Miner Res. 2000 Mar;15(3):550-6. (PMID: 10750570)
Mol Cell Biol. 2006 Sep;26(17):6453-68. (PMID: 16914731)
Cell Stem Cell. 2010 Sep 3;7(3):380-90. (PMID: 20804973)
Nat Commun. 2018 Nov 16;9(1):4831. (PMID: 30446646)
Bone. 2022 Jan;154:116257. (PMID: 34781049)
Biochem Biophys Res Commun. 1999 Dec 20;266(2):448-53. (PMID: 10600523)
J Bone Miner Res. 2015 Nov;30(11):1959-68. (PMID: 25990470)
Arch Biochem Biophys. 2020 Sep 30;691:108482. (PMID: 32710882)
Purinergic Signal. 2023 Jun;19(2):353-366. (PMID: 35870033)
Bone. 1987;8(2):105-9. (PMID: 3593606)
Cell. 2016 Jun 30;166(1):63-76. (PMID: 27293185)
Nat Commun. 2016 Oct 19;7:13176. (PMID: 27759007)
Biochem J. 1987 Nov 15;248(1):129-37. (PMID: 3325035)
ChemMedChem. 2016 Oct 19;11(20):2261-2271. (PMID: 27552707)
Pharmacol Res. 2020 Feb;152:104589. (PMID: 31874253)
J Clin Invest. 2019 Dec 2;129(12):5187-5203. (PMID: 31430259)
Elife. 2021 Oct 14;10:. (PMID: 34647520)
FASEB J. 2020 Aug;34(8):11058-11067. (PMID: 32627870)
J Bone Miner Res. 2021 Mar;36(3):604-616. (PMID: 33253422)
Cell Rep. 2020 Sep 8;32(10):108108. (PMID: 32905773)
J Biol Chem. 1997 Oct 17;272(42):26346-53. (PMID: 9334207)
Nat Protoc. 2014 Feb;9(2):421-38. (PMID: 24457333)
Am J Physiol. 1978 Jan;234(1):C51-5. (PMID: 23680)
Curr Protoc Toxicol. 2014 May 27;60:25.2.1-16. (PMID: 24865646)
معلومات مُعتمدة: U54 GM115516 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: Agilent seahorse cellular flux analyzer; Glycolysis; PTH bioenergetics; Plasma Membrane Permeabilizer Assay
تواريخ الأحداث: Date Created: 20230814 Latest Revision: 20240416
رمز التحديث: 20240416
مُعرف محوري في PubMed: PMC10412867
DOI: 10.1016/j.bonr.2023.101705
PMID: 37576927
قاعدة البيانات: MEDLINE
الوصف
تدمد:2352-1872
DOI:10.1016/j.bonr.2023.101705