دورية أكاديمية

The Cortical and Subcortical Neural Control of Swallowing: A Narrative Review.

التفاصيل البيبلوغرافية
العنوان: The Cortical and Subcortical Neural Control of Swallowing: A Narrative Review.
المؤلفون: Wei KC; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, No. 7, Zhongshan South Road, Zhongzheng District, Taipei, 100, Taiwan.; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Jinshan Branch, New Taipei City, Taiwan., Wang TG; Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, No. 7, Zhongshan South Road, Zhongzheng District, Taipei, 100, Taiwan.; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, No. 7, Zhongshan South Road, Zhongzheng District, Taipei, 100, Taiwan., Hsiao MY; Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, No. 7, Zhongshan South Road, Zhongzheng District, Taipei, 100, Taiwan. myferrant@gmail.com.; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, No. 7, Zhongshan South Road, Zhongzheng District, Taipei, 100, Taiwan. myferrant@gmail.com.
المصدر: Dysphagia [Dysphagia] 2024 Apr; Vol. 39 (2), pp. 177-197. Date of Electronic Publication: 2023 Aug 21.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: United States NLM ID: 8610856 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0460 (Electronic) Linking ISSN: 0179051X NLM ISO Abbreviation: Dysphagia Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York : Springer-Verlag, [c1986-
مواضيع طبية MeSH: Deglutition*/physiology , Deglutition Disorders*/therapy, Humans ; Thalamus/physiology ; Pharynx/physiology
مستخلص: Swallowing is a sophisticated process involving the precise and timely coordination of the central and peripheral nervous systems, along with the musculatures of the oral cavity, pharynx, and airway. The role of the infratentorial neural structure, including the swallowing central pattern generator and cranial nerve nuclei, has been described in greater detail compared with both the cortical and subcortical neural structures. Nonetheless, accumulated data from analysis of swallowing performance in patients with different neurological diseases and conditions, along with results from neurophysiological studies of normal swallowing have gradually enhanced understanding of the role of cortical and subcortical neural structures in swallowing, potentially leading to the development of treatment modalities for patients suffering from dysphagia. This review article summarizes findings about the role of both cortical and subcortical neural structures in swallowing based on results from neurophysiological studies and studies of various neurological diseases. In sum, cortical regions are mainly in charge of initiation and coordination of swallowing after receiving afferent information, while subcortical structures including basal ganglia and thalamus are responsible for movement control and regulation during swallowing through the cortico-basal ganglia-thalamo-cortical loop. This article also presents how cortical and subcortical neural structures interact with each other to generate the swallowing response. In addition, we provided the updated evidence about the clinical applications and efficacy of neuromodulation techniques, including both non-invasive brain stimulation and deep brain stimulation on dysphagia.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691–707. https://doi.org/10.1016/j.pmr.2008.06.001 . (PMID: 10.1016/j.pmr.2008.06.001189406362597750)
Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81(2):929–69. https://doi.org/10.1152/physrev.2001.81.2.929 . (PMID: 10.1152/physrev.2001.81.2.92911274347)
Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke. 2005;36(12):2756–63. https://doi.org/10.1161/01.STR.0000190056.76543.eb . (PMID: 10.1161/01.STR.0000190056.76543.eb16269630)
Lee HT, Lim OK, Park KD, Lee JK. Dysphagia pattern according to stroke location. J Korean Dysphagia Soc. 2014;4(1):28–36.
Wilmskoetter J, Bonilha L, Martin-Harris B, Elm JJ, Horn J, Bonilha HS. Mapping acute lesion locations to physiological swallow impairments after stroke. Neuroimage Clin. 2019;22:101685. https://doi.org/10.1016/j.nicl.2019.101685 . (PMID: 10.1016/j.nicl.2019.101685307116836357850)
Suttrup I, Warnecke T. Dysphagia in Parkinson’s disease. Dysphagia. 2016;31(1):24–32. https://doi.org/10.1007/s00455-015-9671-9 . (PMID: 10.1007/s00455-015-9671-926590572)
Flowers HL, AlHarbi MA, Mikulis D, et al. MRI-based neuroanatomical predictors of dysphagia, dysarthria, and aphasia in patients with first acute ischemic stroke. Cerebrovasc Dis Extra. 2017;7(1):21–34. https://doi.org/10.1159/000457810 . (PMID: 10.1159/000457810282081395346925)
Gonzalez-Fernandez M, Kleinman JT, Ky PK, Palmer JB, Hillis AE. Supratentorial regions of acute ischemia associated with clinically important swallowing disorders: a pilot study. Stroke. 2008;39(11):3022–8. https://doi.org/10.1161/STROKEAHA.108.518969 . (PMID: 10.1161/STROKEAHA.108.518969186880143072244)
Alberts MJ, Horner J, Gray L, Brazer SR. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia. 1992;7(3):170–3. https://doi.org/10.1007/BF02493452 . (PMID: 10.1007/BF024934521499361)
Suntrup S, Kemmling A, Warnecke T, et al. The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 1: dysphagia incidence, severity and aspiration. Eur J Neurol. 2015;22(5):832–8. https://doi.org/10.1111/ene.12670 . (PMID: 10.1111/ene.1267025677582)
Suntrup-Krueger S, Kemmling A, Warnecke T, et al. The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 2: oropharyngeal residue, swallow and cough response, and pneumonia. Eur J Neurol. 2017;24(6):867–74. https://doi.org/10.1111/ene.13307 . (PMID: 10.1111/ene.1330728449405)
Steinhagen V, Grossmann A, Benecke R, Walter U. Swallowing disturbance pattern relates to brain lesion location in acute stroke patients. Stroke. 2009;40(5):1903–6. https://doi.org/10.1161/STROKEAHA.108.535468 . (PMID: 10.1161/STROKEAHA.108.53546819286597)
Wilmskoetter J, Daniels SK, Miller AJ. Cortical and subcortical control of swallowing-can we use information from lesion locations to improve diagnosis and treatment for patients with stroke? Am J Speech Lang Pathol. 2020;29(2S):1030–43. https://doi.org/10.1044/2019_AJSLP-19-00068 . (PMID: 10.1044/2019_AJSLP-19-00068326506647844337)
Daniels SK, Foundas AL. Lesion localization in acute stroke patients with risk of aspiration. J Neuroimaging. 1999;9:91–8. (PMID: 10.1111/jon1999929110208106)
Cola MG, Daniels SK, Corey DM, Lemen LC, Romero M, Foundas AL. Relevance of subcortical stroke in dysphagia. Stroke. 2010;41(3):482–6. https://doi.org/10.1161/STROKEAHA.109.566133 . (PMID: 10.1161/STROKEAHA.109.56613320093638)
Moon HI, Kim GS, Lee E. Is the location of white matter lesions important in the swallowing function of older patients with mild stroke? Dysphagia. 2019;34(3):407–14. https://doi.org/10.1007/s00455-018-9955-y . (PMID: 10.1007/s00455-018-9955-y30382381)
Kim JY, Yoon SY, Kim J, Wook KY. Neural correlates of cricopharyngeal dysfunction after supratentorial stroke: a voxel-based lesion-symptom mapping with propensity score matched case-control. Int J Stroke. 2022;17(2):207–17. https://doi.org/10.1177/17474930211006300 . (PMID: 10.1177/1747493021100630033724099)
Jang S, Yang HE, Yang HS, Kim DH. Lesion characteristics of chronic dysphagia in patients with supratentorial stroke. Ann Rehabil Med. 2017;41(2):225–30. https://doi.org/10.5535/arm.2017.41.2.225 . (PMID: 10.5535/arm.2017.41.2.225285034555426274)
Lee WH, Lim MH, Seo HG, Seong MY, Oh BM, Kim S. Development of a novel prognostic model to predict 6-month swallowing recovery after ischemic stroke. Stroke. 2020;51(2):440–8. https://doi.org/10.1161/STROKEAHA.119.027439 . (PMID: 10.1161/STROKEAHA.119.02743931884906)
Galovic M, Leisi N, Muller M, et al. Lesion location predicts transient and extended risk of aspiration after supratentorial ischemic stroke. Stroke. 2013;44(10):2760–7. https://doi.org/10.1161/STROKEAHA.113.001690 . (PMID: 10.1161/STROKEAHA.113.00169023887840)
Kim JH, Oh SH, Jeong HJ, Sim YJ, Kim DG, Kim GC. Association between duration of dysphagia recovery and lesion location on magnetic resonance imaging in patients with middle cerebral artery infarction. Ann Rehabil Med. 2019;43(2):142–8. https://doi.org/10.5535/arm.2019.43.2.142 . (PMID: 10.5535/arm.2019.43.2.142310720806509585)
Wilmskoetter J, Martin-Harris B, Pearson WG Jr, et al. Differences in swallow physiology in patients with left and right hemispheric strokes. Physiol Behav. 2018;194:144–52. https://doi.org/10.1016/j.physbeh.2018.05.010 . (PMID: 10.1016/j.physbeh.2018.05.010297582286070395)
Malandraki GA, Johnson S, Robbins J. Functional MRI of swallowing: from neurophysiology to neuroplasticity. Head Neck. 2011;33(Suppl 1):S14-20. https://doi.org/10.1002/hed.21903 . (PMID: 10.1002/hed.21903219017793747973)
Lima MS, Mangilli LD, Sassi FC, Andrade CR. Functional magnetic resonance and swallowing: critical literature review. Braz J Otorhinolaryngol. 2015;81(6):671–80. https://doi.org/10.1016/j.bjorl.2015.08.006 . (PMID: 10.1016/j.bjorl.2015.08.006263949179442730)
Humbert IA, Robbins J. Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia. 2007;22(3):266–75. https://doi.org/10.1007/s00455-007-9080-9 . (PMID: 10.1007/s00455-007-9080-9174407752631032)
Hamdy S, Rothwell JC, Brooks DJ, Bailey D, Aziz Q, Thompson DG. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. J Neurophysiol. 1999;81(4):1917–26. https://doi.org/10.1152/jn.1999.81.4.1917 . (PMID: 10.1152/jn.1999.81.4.191710200226)
Harris ML, Julyan P, Kulkarni B, et al. Mapping metabolic brain activation during human volitional swallowing: a positron emission tomography study using [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab. 2005;25(4):520–6. https://doi.org/10.1038/sj.jcbfm.9600042 . (PMID: 10.1038/sj.jcbfm.960004215689960)
David H, Zald JVP. The functional neuroanatomy of voluntary swallowing. Ann Neurol. 2001;46:281–6. https://doi.org/10.1002/1531-8249(199909)46:3%3c281::AID-ANA2%3e3.0.CO;2-L . (PMID: 10.1002/1531-8249(199909)46:3<281::AID-ANA2>3.0.CO;2-L)
Abe S, Wantanabe Y, Shintani M, Tazaki M, Takahashi M, Yamane GY, Ide Y, Yamada Y, Shimono M, Ishikawa T. Magnetoencephalographic study of the starting point of voluntary swallowing. Cranio. 2003;21:46–9. (PMID: 10.1080/08869634.2003.1174623112555931)
Dziewas R, Sörös P, Ishii R, et al. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage. 2003;20(1):135–44. https://doi.org/10.1016/s1053-8119(03)00285-4 . (PMID: 10.1016/s1053-8119(03)00285-414527576)
Furlong PL, Hobson AR, Aziz Q, et al. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage. 2004;22(4):1447–55. https://doi.org/10.1016/j.neuroimage.2004.02.041 . (PMID: 10.1016/j.neuroimage.2004.02.04115275902)
Loose R, Hamdy S, Enck P. Magnetoencephalographic response characteristics associated with tongue movement. Dysphagia. 2001;16(3):183–5. https://doi.org/10.1007/s00455-001-0062-z . (PMID: 10.1007/s00455-001-0062-z11453564)
Watanabe Y, Abe S, Ishikawa T, Yamada Y, Yamane GY. Cortical regulation during the early stage of initiation of voluntary swallowing in humans. Dysphagia. 2004;19(2):100–8. https://doi.org/10.1007/s00455-003-0509-5 . (PMID: 10.1007/s00455-003-0509-515382798)
Ertekin C, Turman B, Tarlaci S, Celik M, Aydogdu I, Secil Y, Kiylioglu N. Cricopharyngeal sphincter muscle responses to transcranial magnetic stimulation in normal subjects and in patients with dysphagia. Clin Neurophysiol. 2001;112:86–94. (PMID: 10.1016/S1388-2457(00)00504-611137665)
Rödel RMW, Laskawi R, Markus H. Tongue representation in the lateral cortical motor region of the human brain as assessed by transcranial magnetic stimulation. Ann Otol Rhinol Laryngol. 2003;112:71–6. (PMID: 10.1177/00034894031120011412537062)
Hiraoka K. Movement-related cortical potentials associated with saliva and water bolus swallowing. Dysphagia. 2004;19(3):155–9. https://doi.org/10.1007/s00455-004-0002-9 . (PMID: 10.1007/s00455-004-0002-915383944)
Huckabee M, Deecke L, Cannito MP, Gould HJ, Mayr W. Cortical control mechanisms in volitional swallowing: the bereitschaftspotential. Brain Topogr. 2003;16:3–17. (PMID: 10.1023/A:102567191494914587965)
Satow AI T, Yamamoto J-I, Begum T, Thuy DHD, Matsuhashi M, Mima T, Nagamine T, Baba K, Mihara T, Inoue Y, Miyamoto S, Hashimoto N, Shibasaki H. Role of primary sensorimotor cortex and supplementary motor area involitional swallowing: a movement-related cortical potential study. Am J Physiol Gastrointest Liver Physiol. 2003. https://doi.org/10.1152/ajpgi.00323.2003 . (PMID: 10.1152/ajpgi.00323.2003)
Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, Diamant NE. Cortical activation during human volitionalswallowing: an event-related fMRI study. Am J Physiol-Gastrointest Liver Physiol. 1999;277:219–25. (PMID: 10.1152/ajpgi.1999.277.1.G219)
Tae WS, Lee S, Choi S, Pyun SB. Effects of aging on brain networks during swallowing: general linear model and independent component analyses. Sci Rep. 2021;11(1):1069. https://doi.org/10.1038/s41598-020-79782-1 . (PMID: 10.1038/s41598-020-79782-1334417387806781)
Hashimoto H, Takahashi K, Kameda S, et al. Swallowing-related neural oscillation: an intracranial EEG study. Ann Clin Transl Neurol. 2021;8(6):1224–38. https://doi.org/10.1002/acn3.51344 . (PMID: 10.1002/acn3.51344339491578164860)
Hashimoto H, Takahashi K, Kameda S, et al. Motor and sensory cortical processing of neural oscillatory activities revealed by human swallowing using intracranial electrodes. iScience. 2021;24(7):102786. https://doi.org/10.1016/j.isci.2021.102786 . (PMID: 10.1016/j.isci.2021.102786343082928283146)
Groppa S, Oliviero A, Eisen A, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858–82. https://doi.org/10.1016/j.clinph.2012.01.010 . (PMID: 10.1016/j.clinph.2012.01.010223493044890546)
Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114(12):2226–44. https://doi.org/10.1016/s1388-2457(03)00237-2 . (PMID: 10.1016/s1388-2457(03)00237-214652082)
Levine R, Robbins JA, Maser A. Periventricular white matter changes and oropharyngeal swallowing in normal individuals. Dysphagia. 1992;7:142–7. (PMID: 10.1007/BF024934461499355)
Mosier K, Patel R, Liu WC, Kalnin A, Maldjian J, Baredes S. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope. 1999;109(9):1417–23. https://doi.org/10.1097/00005537-199909000-00011 . (PMID: 10.1097/00005537-199909000-0001110499047)
Mosier KM, Liu W-C, Maldjian JA, Shah R, Modia B. Lateralization of cortical function in swallowing: a functional MR imaging study. Am J Neuroradiol. 1999;20:1520–6. (PMID: 105122407657739)
Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50. (PMID: 10.1152/jn.2001.85.2.93811160524)
Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140(3):280–9. https://doi.org/10.1007/s002210100813 . (PMID: 10.1007/s00221010081311681303)
Kern M, Birn R, Jaradeh S, Jesmanowicz A, Cox R, Hyde J, Shaker R. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol Gastrointest Liver Physiol. 2001;280:531–8. (PMID: 10.1152/ajpgi.2001.280.4.G531)
Hartnick C, Rudolph C, Willging J, Holland S. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope. 2001. https://doi.org/10.1097/00005537-200107000-00010 . (PMID: 10.1097/00005537-200107000-0001011568539)
Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G354–60. https://doi.org/10.1152/ajpgi.2001.280.3.G354 . (PMID: 10.1152/ajpgi.2001.280.3.G35411171617)
Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18(2):71–7. https://doi.org/10.1007/s00455-002-0088-x . (PMID: 10.1007/s00455-002-0088-x12825899)
Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, Menon RS. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol. 2004;92:2428–43. https://doi.org/10.1152/jn.01144.2003 . (PMID: 10.1152/jn.01144.200315163677)
Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) “Go, No-Go” study. Exp Brain Res. 2005;161(1):81–90. https://doi.org/10.1007/s00221-004-2048-1 . (PMID: 10.1007/s00221-004-2048-115536553)
Daniels SK, Corey DM, Fraychinaud A, DePolo A, Foundas AL. Swallowing lateralization: the effects of modified dual-task interference. Dysphagia. 2006;21(1):21–7. https://doi.org/10.1007/s00455-005-9007-2 . (PMID: 10.1007/s00455-005-9007-216544089)
Mistry S, Verin E, Singh S, et al. Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. J Physiol. 2007;585(Pt 2):525–38. https://doi.org/10.1113/jphysiol.2007.144592 . (PMID: 10.1113/jphysiol.2007.144592179321402375494)
Teismann IK, Steinstraeter O, Stoeckigt K, et al. Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neurosci. 2007;8:62. https://doi.org/10.1186/1471-2202-8-62 . (PMID: 10.1186/1471-2202-8-62176785461950520)
Malandraki GA, Sutton BP, Perlman AL, Karampinos DC, Conway C. Neural activation of swallowing and swallowing-related tasks in healthy young adults: an attempt to separate the components of deglutition. Hum Brain Mapp. 2009;30(10):3209–26. https://doi.org/10.1002/hbm.20743 . (PMID: 10.1002/hbm.20743192479946870848)
Peck KK, Branski RC, Lazarus C, et al. Cortical activation during swallowing rehabilitation maneuvers: a functional MRI study of healthy controls. Laryngoscope. 2010;120(11):2153–9. https://doi.org/10.1002/lary.21125 . (PMID: 10.1002/lary.2112520938958)
Mistry S, Michou E, Singh S, et al. Using diffusion weighted MR imaging to dissect the neuroanatomy of human swallowing related behaviours. Gut. 2011;60(Suppl 1):A39–40. https://doi.org/10.1136/gut.2011.239301.78 . (PMID: 10.1136/gut.2011.239301.78)
Logemann JA, Shanahan T, Rademaker AW, Kahrilas PJ, Lazar R, Halper A. Oropharyngeal swallowing after stroke in the left basal ganglion/internal capsule. Dysphagia. 1993;8:230–4. (PMID: 10.1007/BF013545438359043)
Robbins J, Levine RL, Maser A, Rosenbek JC, Kempster GB. Swallowing after unilateral stroke of the cerebral cortex. Arch Phys Med Rehabil. 1993;74(12):1295–300. https://doi.org/10.1016/0003-9993(93)90082-l . (PMID: 10.1016/0003-9993(93)90082-l8259895)
Daniels SK, Foundas AL, Iglesia GC, Sullivan MA. Lesion site in unilateral stroke patients with dysphagia. J Stroke Cerebrovasc Dis. 1996;6(1):30–4. https://doi.org/10.1016/s1052-3057(96)80023-1 . (PMID: 10.1016/s1052-3057(96)80023-117894962)
Daniels SK, Foundas AL. The role of the insular cortex in dysphagia. Dysphagia. 1997;12:146–56. https://doi.org/10.1007/PL000095298 . (PMID: 10.1007/PL0000952989190100)
Suntrup S, Warnecke T, Kemmling A, et al. Dysphagia in patients with acute striatocapsular hemorrhage. J Neurol. 2012;259(1):93–9. https://doi.org/10.1007/s00415-011-6129-3 . (PMID: 10.1007/s00415-011-6129-321647725)
Lin CW, Chang YC, Chen WS, Chang K, Chang HY, Wang TG. Prolonged swallowing time in dysphagic Parkinsonism patients with aspiration pneumonia. Arch Phys Med Rehabil. 2012;93(11):2080–4. https://doi.org/10.1016/j.apmr.2012.07.010 . (PMID: 10.1016/j.apmr.2012.07.01022846454)
Maeshima S, Osawa A, Yamane F, Ishihara S, Tanahashi N. Dysphagia following acute thalamic haemorrhage: clinical correlates and outcomes. Eur Neurol. 2014;71(3–4):165–72. https://doi.org/10.1159/000355477 . (PMID: 10.1159/00035547724457317)
Ellerston JK, Heller AC, Houtz DR, Kendall KA. Quantitative measures of swallowing deficits in patients with Parkinson’s disease. Ann Otol Rhinol Laryngol. 2016;125(5):385–92. https://doi.org/10.1177/0003489415617774 . (PMID: 10.1177/000348941561777426602905)
Kim YH, Oh BM, Jung IY, Lee JC, Lee GJ, Han TR. Spatiotemporal characteristics of swallowing in Parkinson’s disease. Laryngoscope. 2015;125(2):389–95. https://doi.org/10.1002/lary.24869 . (PMID: 10.1002/lary.2486925093527)
Galovic M, Leisi N, Muller M, et al. Neuroanatomical correlates of tube dependency and impaired oral intake after hemispheric stroke. Eur J Neurol. 2016;23(5):926–34. https://doi.org/10.1111/ene.12964 . (PMID: 10.1111/ene.1296426901451)
Galovic M, Leisi N, Pastore-Wapp M, et al. Diverging lesion and connectivity patterns influence early and late swallowing recovery after hemispheric stroke. Hum Brain Mapp. 2017;38(4):2165–76. https://doi.org/10.1002/hbm.23511 . (PMID: 10.1002/hbm.23511280839066866818)
Moon HI, Nam JS, Leem MJ, Kim KH. Periventricular white matter lesions as a prognostic factor of swallowing function in older patients with mild stroke. Dysphagia. 2017;32(4):480–6. https://doi.org/10.1007/s00455-017-9788-0 . (PMID: 10.1007/s00455-017-9788-028349208)
Fandler S, Gattringer T, Eppinger S, et al. Frequency and predictors of dysphagia in patients with recent small subcortical infarcts. Stroke. 2017;48(1):213–5. https://doi.org/10.1161/STROKEAHA.116.015625 . (PMID: 10.1161/STROKEAHA.116.01562527924054)
May NH, Pisegna JM, Marchina S, Langmore SE, Kumar S, Pearson WG Jr. Pharyngeal swallowing mechanics secondary to hemispheric stroke. J Stroke Cerebrovasc Dis. 2017;26(5):952–61. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.001 . (PMID: 10.1016/j.jstrokecerebrovasdis.2016.11.00127913200)
Lee WH, Lim MH, Nam HS, et al. Differential kinematic features of the hyoid bone during swallowing in patients with Parkinson’s disease. J Electromyogr Kinesiol. 2019;47:57–64. https://doi.org/10.1016/j.jelekin.2019.05.011 . (PMID: 10.1016/j.jelekin.2019.05.01131128338)
Schiffer BL, Kendall K. Changes in timing of swallow events in Parkinson’s disease. Ann Otol Rhinol Laryngol. 2019;128(1):22–7. https://doi.org/10.1177/0003489418806918 . (PMID: 10.1177/000348941880691830328706)
Lapa S, Claus I, Reitz SC, et al. Effect of thalamic deep brain stimulation on swallowing in patients with essential tremor. Ann Clin Transl Neurol. 2020;7(7):1174–80. https://doi.org/10.1002/acn3.51099 . (PMID: 10.1002/acn3.51099325489237359107)
Miller AJ. The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev. 2008;14(2):77–86. https://doi.org/10.1002/ddrr.12 . (PMID: 10.1002/ddrr.1218646019)
Oliveira-Maia AJ, de Araujo IE, Monteiro C, Workman V, Galhardo V, Nicolelis MA. The insular cortex controls food preferences independently of taste receptor signaling. Front Syst Neurosci. 2012;6:5. https://doi.org/10.3389/fnsys.2012.00005 . (PMID: 10.3389/fnsys.2012.00005224035303290770)
Gogolla N. The insular cortex. Curr Biol. 2017;27(12):R580–6. https://doi.org/10.1016/j.cub.2017.05.010 . (PMID: 10.1016/j.cub.2017.05.01028633023)
Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol. 2017;34(4):300–6. https://doi.org/10.1097/WNP.0000000000000377 . (PMID: 10.1097/WNP.0000000000000377286441996032992)
Wei KC, Hsiao MY, Wang TG. The kinematic features of hyoid bone movement during swallowing in different disease populations: a narrative review. J Formos Med Assoc. 2022. https://doi.org/10.1016/j.jfma.2022.04.007 . (PMID: 10.1016/j.jfma.2022.04.007365643018919791)
Ghaemi H, Sobhani-Rad D, Arabi A, Saifpanahi S, Ghayoumi AZ. Role of basal ganglia in swallowing process: a systematic review. Iran Rehabil J. 2017;14(4):239–45. https://doi.org/10.18869/nrip.irj.14.4.239 . (PMID: 10.18869/nrip.irj.14.4.239)
Lenz FA, Gracely RH, Zirh TA, Leopold DA, Rowland LH, Dougherty PM. Human thalamic nucleus mediating taste and multiple other sensations related to ingestive behavior. J Neurophysiol. 1997;77(6):3406–9. https://doi.org/10.1152/jn.1997.77.6.3406 . (PMID: 10.1152/jn.1997.77.6.34069212287)
Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci. 2008;1142:266–309. https://doi.org/10.1196/annals.1444.017 . (PMID: 10.1196/annals.1444.017189901323753195)
Brown S, Ngan E, Liotti M. A larynx area in the human motor cortex. Cereb Cortex. 2008;18(4):837–45. https://doi.org/10.1093/cercor/bhm131 . (PMID: 10.1093/cercor/bhm13117652461)
Huang CS, Hiraba H, Murray GM, Sessle BJ. Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis). J Neurophysiol. 1989;61(3):635–50. https://doi.org/10.1152/jn.1989.61.3.635 . (PMID: 10.1152/jn.1989.61.3.6352709104)
Li WQ, Lin T, Li X, et al. TMS brain mapping of the pharyngeal cortical representation in healthy subjects. Brain Stimul. 2020;13(3):891–9. https://doi.org/10.1016/j.brs.2020.02.031 . (PMID: 10.1016/j.brs.2020.02.03132289722)
Hamdy S, Aziz Q, Rothwell JC, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996;2(11):1217–24. https://doi.org/10.1038/nm1196-1217 . (PMID: 10.1038/nm1196-12178898748)
Morecraft RJ, Stilwell-Morecraft KS, Rossing WR. The motor cortex and facial expression: new insights from neuroscience. Neurologist. 2004;10(5):235–49. https://doi.org/10.1097/01.nrl.0000138734.45742.8d . (PMID: 10.1097/01.nrl.0000138734.45742.8d15335441)
Gonzalez-Fernandez M, Ottenstein L, Atanelov L, Christian AB. Dysphagia after stroke: an overview. Curr Phys Med Rehabil Rep. 2013;1(3):187–96. https://doi.org/10.1007/s40141-013-0017-y . (PMID: 10.1007/s40141-013-0017-y249771094066736)
Ertekin C. Voluntary versus spontaneous swallowing in man. Dysphagia. 2011;26(2):183–92. https://doi.org/10.1007/s00455-010-9319-8 . (PMID: 10.1007/s00455-010-9319-821161279)
Leopold NA, Daniels SK. Supranuclear control of swallowing. Dysphagia. 2010;25(3):250–7. https://doi.org/10.1007/s00455-009-9249-5 . (PMID: 10.1007/s00455-009-9249-519730940)
Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17(3):166–71. https://doi.org/10.1097/MOO.0b013e32832b255e . (PMID: 10.1097/MOO.0b013e32832b255e19369872)
Cheng I, Takahashi K, Miller A, Hamdy S. Cerebral control of swallowing: An update on neurobehavioral evidence. J Neurol Sci. 2022;442:120434. https://doi.org/10.1016/j.jns.2022.120434 . (PMID: 10.1016/j.jns.2022.12043436170765)
Ariani GWM, Lingnau A. Decoding internally and externally driven movement plans. J Neurosci. 2015;35(42):14160–71. https://doi.org/10.1523/JNEUROSCI.0596-15.2015 . (PMID: 10.1523/JNEUROSCI.0596-15.2015264908576605426)
Kiernan JA. Anatomy of the temporal lobe. Epilepsy Res Treat. 2012;2012:176157. https://doi.org/10.1155/2012/176157 . (PMID: 10.1155/2012/176157229341603420617)
Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995. https://doi.org/10.1093/brain/118.1.279 . (PMID: 10.1093/brain/118.1.2797895011)
Yukie M. Neural connections of auditory association cortex with the posterior cingulate cortex in the monkey. Neurosci Res. 1995;22:179–87. (PMID: 10.1016/0168-0102(95)00888-17566698)
Florio TM, Scarnati E, Rosa I, et al. The Basal Ganglia: More than just a switching device. CNS Neurosci Ther. 2018;24(8):677–84. https://doi.org/10.1111/cns.12987 . (PMID: 10.1111/cns.12987298792926490066)
Mücke D, Hermes A, Roettger TB, et al. The effects of thalamic deep brain stimulation on speech dynamics in patients with essential tremor: an articulographic study. PLOS ONE. 2018;13(1):e0191359. https://doi.org/10.1371/journal.pone.0191359 . (PMID: 10.1371/journal.pone.0191359293608675779681)
Chiu SY, Nozile-Firth K, Klassen BT, et al. Ataxia and tolerance after thalamic deep brain stimulation for essential tremor. Parkinsonism Relat Disord. 2020;80:47–53. https://doi.org/10.1016/j.parkreldis.2020.09.009 . (PMID: 10.1016/j.parkreldis.2020.09.00932950784)
Aumann TD. Cerebello-thalamic synapses and motor adaptation. Cerebellum. 2002;1(1):69–77. https://doi.org/10.1080/147342202753203104 . (PMID: 10.1080/14734220275320310412879975)
Marmarou CR. Periventricular white matter. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of clinical neuropsychology. New York: Springer; 2011. p. 1914–5. (PMID: 10.1007/978-0-387-79948-3_350)
Hazzaa NM, Mancini L, Thornton J, Yousry TA. Somatotopic organization of corticospinal/corticobulbar motor tracts in controls and patients with tumours: a combined fMRI-DTI study. Neuroimage Clin. 2019;23:101910. https://doi.org/10.1016/j.nicl.2019.101910 . (PMID: 10.1016/j.nicl.2019.101910314918246661277)
Janelle F, Iorio-Morin C, D’Amour S, Fortin D. Superior longitudinal fasciculus: a review of the anatomical descriptions with functional correlates. Front Neurol. 2022;13:794618. https://doi.org/10.3389/fneur.2022.794618 . (PMID: 10.3389/fneur.2022.794618355729489093186)
Ringo JL, Doty RW, Demeter S, Simard PY. Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex. 1994;4(4):331–43. https://doi.org/10.1093/cercor/4.4.331 . (PMID: 10.1093/cercor/4.4.3317950307)
Aziz Q, Furlong PL, Barlow J, et al. Topographic mapping of cortical potentials evoked by distension of the human proximal and distal oesophagus. Electroencephalogr Clin Neurophysiol. 1995;96(3):219–28. https://doi.org/10.1016/0168-5597(94)00297-r . (PMID: 10.1016/0168-5597(94)00297-r7750447)
Kober SE, Wood G. Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: a near-infrared spectroscopy study. Neuroimage. 2014;93(Pt 1):1–10. https://doi.org/10.1016/j.neuroimage.2014.02.019 . (PMID: 10.1016/j.neuroimage.2014.02.01924576696)
Soros P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30(8):2426–39. https://doi.org/10.1002/hbm.20680 . (PMID: 10.1002/hbm.2068019107749)
Mateos-Aparicio P, Rodriguez-Moreno A. The impact of studying brain plasticity. Front Cell Neurosci. 2019;13:66. https://doi.org/10.3389/fncel.2019.00066 . (PMID: 10.3389/fncel.2019.00066308730096400842)
Hamdy S, Aziz Q, Rothwell JC, Power M, Singh KD, Nicholson DA, Tallis RC, Thompson DG. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998;115(5):1104–12. https://doi.org/10.1016/s0016-5085(98)70081-2 . (PMID: 10.1016/s0016-5085(98)70081-29797365)
Gow D, Rothwell J, Hobson A, Thompson D, Hamdy S. Induction of long-term plasticity in human swallowing motor cortex following repetitive cortical stimulation. Clin Neurophysiol. 2004;115(5):1044–51. https://doi.org/10.1016/j.clinph.2003.12.001 . (PMID: 10.1016/j.clinph.2003.12.00115066528)
Jefferson S, Mistry S, Singh S, Rothwell J, Hamdy S. Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex. Am J Physiol Gastrointest Liver Physiol. 2009;297(6):G1035–40. https://doi.org/10.1152/ajpgi.00294.2009 . (PMID: 10.1152/ajpgi.00294.2009198156302850087)
Yang W, Cao X, Zhang X, Wang X, Li X, Huai Y. The effect of repetitive transcranial magnetic stimulation on dysphagia after stroke: a systematic review and meta-analysis. Front Neurosci. 2021;15:769848. https://doi.org/10.3389/fnins.2021.769848 . (PMID: 10.3389/fnins.2021.769848348671718634594)
Li L, Huang H, Jia Y, et al. Systematic review and network meta-analysis of noninvasive brain stimulation on dysphagia after stroke. Neural Plast. 2021;2021:3831472. https://doi.org/10.1155/2021/3831472 . (PMID: 10.1155/2021/3831472347774978580697)
Du J, Yang F, Liu L, et al. Repetitive transcranial magnetic stimulation for rehabilitation of poststroke dysphagia: a randomized, double-blind clinical trial. Clin Neurophysiol. 2016;127(3):1907–13. https://doi.org/10.1016/j.clinph.2015.11.045 . (PMID: 10.1016/j.clinph.2015.11.04526778719)
Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand. 2009;119(3):155–61. https://doi.org/10.1111/j.1600-0404.2008.01093.x . (PMID: 10.1111/j.1600-0404.2008.01093.x18771521)
Michou E, Mistry S, Jefferson S, Tyrrell P, Hamdy S. Characterizing the mechanisms of central and peripheral forms of neurostimulation in chronic dysphagic stroke patients. Brain Stimul. 2014;7(1):66–73. https://doi.org/10.1016/j.brs.2013.09.005 . (PMID: 10.1016/j.brs.2013.09.005243149093893483)
Park JW, Oh JC, Lee JW, Yeo JS, Ryu KH. The effect of 5Hz high-frequency rTMS over contralesional pharyngeal motor cortex in post-stroke oropharyngeal dysphagia: a randomized controlled study. Neurogastroenterol Motil. 2013;25(4):324-e250. https://doi.org/10.1111/nmo.12063 . (PMID: 10.1111/nmo.1206323279198)
Zhang C, Zheng X, Lu R, Yun W, Yun H, Zhou X. Repetitive transcranial magnetic stimulation in combination with neuromuscular electrical stimulation for treatment of post-stroke dysphagia. J Int Med Res. 2019;47(2):662–72. https://doi.org/10.1177/0300060518807340 . (PMID: 10.1177/030006051880734030354918)
Park E, Kim MS, Chang WH, et al. Effects of bilateral repetitive transcranial magnetic stimulation on post-stroke dysphagia. Brain Stimul. 2017;10(1):75–82. https://doi.org/10.1016/j.brs.2016.08.005 . (PMID: 10.1016/j.brs.2016.08.00527593709)
Cheng I, Sasegbon A, Hamdy S. Effects of neurostimulation on poststroke dysphagia: a synthesis of current evidence from randomized controlled trials. Neuromodulation. 2021;24(8):1388–401. https://doi.org/10.1111/ner.13327 . (PMID: 10.1111/ner.1332733301231)
Di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608. https://doi.org/10.1038/nrneurol.2014.162 . (PMID: 10.1038/nrneurol.2014.16225201238)
Lyons MK. Deep brain stimulation: current and future clinical applications. Mayo Clin Proc. 2011;86(7):662–72. https://doi.org/10.4065/mcp.2011.0045 . (PMID: 10.4065/mcp.2011.0045216463033127561)
Vedam-Mai V, van Battum EY, Kamphuis W, Feenstra MGP, Denys D, Reynolds BA, Okun MS, Hol EM. Deep brain stimulation and the role of astrocytes. Mol Psychiatr. 2012;17(2):124–31. https://doi.org/10.1038/mp.2011.61 . (PMID: 10.1038/mp.2011.61)
McIntyre CC, Anderson RW. Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation. J Neurochem. 2016;139(Suppl 1):338–45. https://doi.org/10.1111/jnc.13649 . (PMID: 10.1111/jnc.13649272733055358920)
Chang MC, Park JS, Lee BJ, Park D. The effect of deep brain stimulation on swallowing function in Parkinson’s disease: a narrative review. Dysphagia. 2021;36(5):786–99. https://doi.org/10.1007/s00455-020-10214-y . (PMID: 10.1007/s00455-020-10214-y33389176)
Lester DB, Rogers TD, Blaha CD. Neuronal pathways involved in deep brain stimulation of the subthalamic nucleus for treatment of Parkinson’s disease. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3302–5. https://doi.org/10.1109/IEMBS.2009.5333771 . (PMID: 10.1109/IEMBS.2009.533377119964298)
Adam EM, Brown EN, Kopell N, McCarthy MM. Deep brain stimulation in the subthalamic nucleus for Parkinson’s disease can restore dynamics of striatal networks. Proc Natl Acad Sci U S A. 2022;119(19):e2120808119. https://doi.org/10.1073/pnas.2120808119 . (PMID: 10.1073/pnas.2120808119355001129171607)
Agarwal R, Sarma SV. The effects of DBS patterns on basal ganglia activity and thalamic relay : a computational study. J Comput Neurosci. 2012;33(1):151–67. https://doi.org/10.1007/s10827-011-0379-z . (PMID: 10.1007/s10827-011-0379-z22237601)
Yu H, Takahashi K, Bloom L, Quaynor SD, Xie T. Effect of deep brain stimulation on swallowing function: a systematic review. Front Neurol. 2020;11:547. https://doi.org/10.3389/fneur.2020.00547 . (PMID: 10.3389/fneur.2020.00547327653887380112)
Xie T, Vigil J, MacCracken E, et al. Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology. 2015;84(4):415–20. https://doi.org/10.1212/WNL.0000000000001184 . (PMID: 10.1212/WNL.0000000000001184255403054336001)
Xie T, Bloom L, Padmanaban M, et al. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. J Neurol Neurosurg Psychiatry. 2018;89(9):989–94. https://doi.org/10.1136/jnnp-2018-318060 . (PMID: 10.1136/jnnp-2018-31806029654112)
Troche MS, Brandimore AE, Foote KD, et al. Swallowing outcomes following unilateral STN vs GPi surgery: a retrospective analysis. Dysphagia. 2014;29(4):425–31. https://doi.org/10.1007/s00455-014-9522-0 . (PMID: 10.1007/s00455-014-9522-0246525824127154)
Robertson LT, St George RJ, Carlson-Kuhta P, Hogarth P, Burchiel KJ, Horak FB. Site of deep brain stimulation and jaw velocity in Parkinson disease. J Neurosurg. 2011;115(5):985–94. https://doi.org/10.3171/2011.7.JNS102173 . (PMID: 10.3171/2011.7.JNS102173218385063517909)
Cheng I, Sasegbon A, Hamdy S. Dysphagia treatments in Parkinson’s disease: a systematic review and meta-analysis. Neurogastroenterol Motil. 2022. https://doi.org/10.1111/nmo.14517 . (PMID: 10.1111/nmo.145173654656810078408)
Simons A, Hamdy S. The use of brain stimulation in dysphagia management. Dysphagia. 2017;32(2):209–15. https://doi.org/10.1007/s00455-017-9789-z . (PMID: 10.1007/s00455-017-9789-z283531515380764)
فهرسة مساهمة: Keywords: Cerebral cortex; Deglutition disorder; Neurophysiology
تواريخ الأحداث: Date Created: 20230821 Date Completed: 20240322 Latest Revision: 20240322
رمز التحديث: 20240322
DOI: 10.1007/s00455-023-10613-x
PMID: 37603047
قاعدة البيانات: MEDLINE