دورية أكاديمية

Sophora genomes provide insight into the evolution of alkaloid metabolites along with small-scale gene duplication.

التفاصيل البيبلوغرافية
العنوان: Sophora genomes provide insight into the evolution of alkaloid metabolites along with small-scale gene duplication.
المؤلفون: Kang YJ; Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea.; Division of Life Science Department, Gyeongsang National University, Jinju, Republic of Korea., Park H; Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea., Lee Y; Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea., Yoon S; Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea., Kwak M; National Institute of Biological Resources, Incheon, 22689, Republic of Korea. mhkwak@korea.kr.
المصدر: BMC genomics [BMC Genomics] 2023 Aug 22; Vol. 24 (1), pp. 475. Date of Electronic Publication: 2023 Aug 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2000-
مواضيع طبية MeSH: Sophora*/genetics , Alkaloids* , Antineoplastic Agents*, Gene Duplication ; Genomics ; Sophora flavescens
مستخلص: The genus Sophora (Fabaceae) includes medicinal plants that have been used in East Asian countries since antiquity. Sophora flavescens is a perennial herb indigenous to China, India, Japan, Korea, and Russia. Its dried roots have antioxidant, anti-inflammatory, antibacterial, apoptosis-modulating, and antitumor efficacy. The congeneric S. koreensis is endemic to Korea and its genome is less than half the size of that of S. flavescens. Nevertheless, this discrepancy can be used to assemble and validate the S. flavescens genome. A comparative genomic study of the two genomes can disclose the recent evolutionary divergence of the polymorphic phenotypic profiles of these species. Here, we used the PacBio sequencing platform to sequence and assemble the S. koreensis and S. flavescens genomes. We inferred that it was mainly small-scale duplication that occurred in S. flavescens. A KEGG analysis revealed pathways that might regulate the pharmacologically important secondary metabolites in S. flavescens and S. koreensis. The genome assemblies of Sophora spp. could be used in comparative genomics and data mining for various plant natural products.
(© 2023. BioMed Central Ltd., part of Springer Nature.)
References: Krishna PM, Knv R, Sandhya, Banji D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev Bras Farmacogn. 2012;22:1145–54.
Liu X-J, Cao M-A, Li W-H, Shen C-S, Yan S-Q, Yuan C-S. Alkaloids from Sophora flavescens Aition. Fitoterapia. 2010;81:524–7. (PMID: 20079811)
Cardoso D, Pennington RT, de Queiroz LP, Boatwright JS, Van Wyk B-E, Wojciechowski MF, et al. Reconstructing the deep-branching relationships of the papilionoid legumes. S Afr J Bot. 2013;89:58–75.
Piao X-L, Piao XS, Kim SW, Park JH, Kim HY, Cai S-Q. Identification and characterization of antioxidants from Sophora flavescens. Biol Pharm Bull. 2006;29:1911–5. (PMID: 16946508)
Cheng H, Xia B, Zhang L, Zhou F, Zhang Y-X, Ye M, et al. Matrine improves 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice. Pharmacol Res. 2006;53:202–8. (PMID: 16332442)
Kuroyanagi M, Arakawa T, Hirayama Y, Hayashi T. Antibacterial and antiandrogen flavonoids from Sophora flavescens. J Nat Prod. 1999;62:1595–9. (PMID: 10654410)
Sun M, Han J, Duan J, Cui Y, Wang T, Zhang W, et al. Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother Res. 2007;21:269–77. (PMID: 17186494)
Ko WG, Kang TH, Kim NY, Lee SJ, Kim YC, Ko GI, et al. Lavandulylflavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens. Toxicol In Vitro. 2000;14:429–33. (PMID: 10963959)
Zhang H, Chen L, Sun X, Yang Q, Wan L, Guo C. Matrine: a promising natural product with various pharmacological activities. Front Pharmacol. 2020;11: 588. (PMID: 324771147232545)
Farias A, Iturriaga P. A systematic review on secondary metabolites of genus sophora: chemical diversity. J Chil Chem Soc. 2022;67:5571–81.
Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050–4. (PMID: 277498385503144)
Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 2016;44:e147. (PMID: 274582045100563)
Roach MJ, Schmidt SA, Borneman AR. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics. 2018;19:460. (PMID: 304973736267036)
Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans Comput Biol Bioinform. 2013;10:645–56. (PMID: 24091398)
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73. (PMID: 223677483408070)
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a New and Scalable Tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37:291–4. (PMID: 31432070)
Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics. 1989;5:164–6.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science. 2008;320:486–8. (PMID: 18436778)
Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics. 2017;33:2759–61. (PMID: 28472236)
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–4. (PMID: 283692015870704)
Park M, Jo S, Kwon J-K, Park J, Ahn JH, Kim S, et al. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics. 2011;12: 85. (PMID: 212762563042944)
Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006;7: 62. (PMID: 164690981409804)
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5. (PMID: 256908504643835)
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–83. (PMID: 20075913)
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4: 10. (PMID: 15171794446195)
Abdelsamad A, Pecinka A. Pollen-specific activation of Arabidopsis retrogenes is associated with global transcriptional reprogramming. Plant Cell. 2014;26:3299–313. (PMID: 251182444371830)
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, Orthology assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol. 2021;38:5825–9. (PMID: 345974058662613)
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309-14. (PMID: 30418610)
Foster CSP, Sauquet H, van der Merwe M, McPherson H, Rossetto M, Ho SYW. Evaluating the impact of genomic data and priors on bayesian estimates of the Angiosperm Evolutionary Timescale. Syst Biol. 2017;66:338–51. (PMID: 27650175)
Clarke VC, Loughlin PC, Day DA, Smith PMC. Transport processes of the legume symbiosome membrane. Front Plant Sci. 2014;5:699. (PMID: 255662744266029)
Nogia P, Pati PK. Plant secondary metabolite transporters: diversity, functionality, and their modulation. Front Plant Sci. 2021;12: 758202. (PMID: 347774388580416)
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. (PMID: 342658448371605)
Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci U S A. 2008;105:14210–5. (PMID: 187723802544603)
Ku Y-S, Cheng S-S, Cheung M-Y, Lam H-M. The roles of Multidrug and toxic compound extrusion (MATE) transporters in regulating agronomic traits. Agronomy. 2022;12: 878.
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. (PMID: 10592173102409)
Hughes EH, Hong S-B, Gibson SI, Shanks JV, San K-YK-Y. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng. 2004;6:268–76. (PMID: 15491856)
Sun J, Manmathan H, Sun C, Peebles CAM. Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC Plant Biol. 2016;16:108. (PMID: 271542434859987)
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res. 2021;44:903–86. (PMID: 349074928671057)
Pan Y, Meng F, Wang X. Sequencing multiple cotton genomes reveals Complex Structures and Lays Foundation for breeding. Front Plant Sci. 2020;11: 560096. (PMID: 330421847525069)
Zhuang Y, Wang X, Li X, Hu J, Fan L, Landis JB, et al. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nat Plants. 2022;8:233–44. (PMID: 35288665)
Wang X, Yan X, Hu Y, Qin L, Wang D, Jia J, et al. A recent burst of gene duplications in Triticeae. Plant Commun. 2022;3:100268. (PMID: 35529951)
معلومات مُعتمدة: NIBR201905102 The genetic evaluation of indigenous vascular plants IV-2
فهرسة مساهمة: Keywords: Congeneric; Divergence; Evolution; Functional annotation; Genome; Phylogeny; Secondary metabolite; Small-scale duplication; Sophora
المشرفين على المادة: 0 (Alkaloids)
0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20230823 Date Completed: 20230824 Latest Revision: 20231118
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10464357
DOI: 10.1186/s12864-023-09516-w
PMID: 37608245
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-2164
DOI:10.1186/s12864-023-09516-w