دورية أكاديمية

New frontiers of soil fungal microbiome and its application for biotechnology in agriculture.

التفاصيل البيبلوغرافية
العنوان: New frontiers of soil fungal microbiome and its application for biotechnology in agriculture.
المؤلفون: Dos Santos MSN; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil., Ody LP; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil., Kerber BD; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil., Araujo BA; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil., Oro CED; Department of Food Engineering, Integrated Regional University of Alto Uruguay and Missions, 1621, Sete de Setembro Av., Fátima, Erechim, RS 99709-910, Brazil., Wancura JHC; Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil., Mazutti MA; Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil., Zabot GL; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil., Tres MV; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil. marcus.tres@ufsm.br.
المصدر: World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2023 Aug 26; Vol. 39 (11), pp. 287. Date of Electronic Publication: 2023 Aug 26.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Berlin : Springer
Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
مواضيع طبية MeSH: Soil* , Mycobiome*, Humans ; Agriculture ; Biotechnology ; Food Chain
مستخلص: The fungi-based technology provided encouraging scenarios in the transition from a conventionally based economic system to the potential security of sources closely associated with the agricultural sphere such as the agriculture. In recent years, the intensification of fungi-based processes has generated significant gains, additionally to the production of materials with significant benefits and strong environmental importance. Furthermore, the growing concern for human health, especially in the agriculture scenario, has fostered the investigation of organisms with high biological and beneficial potential for use in agricultural systems. Accordingly, this study offered a comprehensive review of the diversity of the soil fungal microbiome and its main applications in a biotechnological approach aimed at agriculture and food chain-related areas. Moreover, the spectrum of opportunities and the extensive optimization platform for obtaining fungi compounds and metabolites are discussed. Finally, future perspectives regarding the insurgency of innovations and challenges on the broad rise of visionary solutions applied to the biotechnology context are provided.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Abbey L, Abbey J, Leke-Aladekoba A et al (2019) Biopesticides and biofertilizers: types, production, benefits, and utilization. Feed Pharma Fuels. https://doi.org/10.1002/9781119383956.ch20. (PMID: 10.1002/9781119383956.ch20)
Abrão FO, Duarte ER, Pessoa MS et al (2021) Aspergillus spp. isolates from bovine rumen can increase the digestibility and degradability of forages. Res Soc Dev 10:e56410817340. https://doi.org/10.33448/rsd-v10i8.17340. (PMID: 10.33448/rsd-v10i8.17340)
Aguilar-Marcelino L, Al-Ani LKT, Castañeda-Ramirez GS et al (2020) Microbial technologies to enhance crop production for future needs. New Futur Dev Microb Biotechnol Bioeng Trends Microb Biotechnol Sustain Agric Biomed Syst Divers Funct Perspect. https://doi.org/10.1016/B978-0-12-820526-6.00003-8. (PMID: 10.1016/B978-0-12-820526-6.00003-8)
Ahmad G, Khan A, Khan AA et al (2021) Biological control: a novel strategy for the control of the plant parasitic nematodes. Int J Gen Mol Microbiol 114:885–912. https://doi.org/10.1007/s10482-021-01577-9. (PMID: 10.1007/s10482-021-01577-9)
Akbarian H, Jalali FM, Gheibi M et al (2022) A sustainable decision support system for soil bioremediation of toluene incorporating UN sustainable development goals. Environ Pollut 307:119587. https://doi.org/10.1016/j.envpol.2022.119587. (PMID: 10.1016/j.envpol.2022.11958735680063)
Akerman-Sanchez G, Rojas-Jimenez K (2021) Fungi for the bioremediation of pharmaceutical-derived pollutants: a bioengineering approach to water treatment. Environ Adv 4:100071. https://doi.org/10.1016/j.envadv.2021.100071. (PMID: 10.1016/j.envadv.2021.100071)
Albuquerque SCM (2020) Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: a sustainable alternative. Crop Prot 135:105203. https://doi.org/10.1016/j.cropro.2020.105203. (PMID: 10.1016/j.cropro.2020.105203)
Alothman ZA, Bahkali AH, Elgorban AM et al (2020) Bioremediation of explosive TNT by Trichoderma viride. Molecules 25:1–13. https://doi.org/10.3390/molecules25061393. (PMID: 10.3390/molecules25061393)
Altimira F, Barra ND, La, Godoy P et al (2022) Lobesia botrana: a biological control approach with a biopesticide based on entomopathogenic fungi in the winter season in Chile. Insects 13:8. https://doi.org/10.3390/insects13010008. (PMID: 10.3390/insects13010008)
Altinok H, Koca AS (2020) Modes of action of entomopathogenic fungi. Curr Trend Nat Sci 8:117–124.
Ambele CF, Ekesi S, Bisseleua HDB et al (2020) Entomopathogenic fungi as endophytes for biological control of subterranean termite pests attacking cocoa seedlings. J Fungi 6:1–18. https://doi.org/10.3390/jof6030126. (PMID: 10.3390/jof6030126)
Amiri N, Lahlali R, Amiri S et al (2021) Development of an integrated model to assess the impact of agricultural practices and land use on agricultural production in Morocco under climate stress over the next twenty years. Sustainability. https://doi.org/10.3390/su132111943. (PMID: 10.3390/su132111943)
An R, Ahmed M, Li H et al (2021) Isolation, purification and identification of biological compounds from Beauveria sp. and their evaluation as insecticidal effectiveness against Bemisia tabaci. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-91574-9. (PMID: 10.1038/s41598-021-91574-9)
Ana CRM, Noemi CB, Saveetha K, Everlon CR (2020) Formulation and pathogenicity of a bioherbicide for wild poinsettia control. Afr J Microbiol Res 14:129–135. https://doi.org/10.5897/ajmr2020.9321. (PMID: 10.5897/ajmr2020.9321)
Anand U, Vaishnav A, Sharma SK et al (2022) Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. Sci Total Environ 842:156641. https://doi.org/10.1016/j.scitotenv.2022.156641. (PMID: 10.1016/j.scitotenv.2022.15664135700781)
Ando T (2022) Toward the next generation of HS-AFM. Nanosci Technol. https://doi.org/10.1007/978-3-662-64785-1_8. (PMID: 10.1007/978-3-662-64785-1_8)
Andreolli M, Lampis S, Brignoli P, Vallini G (2016) Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 23:9134–9143. https://doi.org/10.1007/s11356-016-6167-6. (PMID: 10.1007/s11356-016-6167-6)
Argumedo-Delira R, Gómez-Martínez MJ, Mora-Delgado J (2022) Plant growth promoting filamentous fungi and their application in the fertilization of pastures for animal consumption. Agronomy 12:3033. https://doi.org/10.3390/agronomy12123033. (PMID: 10.3390/agronomy12123033)
Attia MS, Abdelaziz AM, Al-Askar AA et al (2022) Plant growth-promoting fungi as biocontrol tool against Fusarium wilt disease of tomato plant. J Fungi. https://doi.org/10.3390/jof8080775. (PMID: 10.3390/jof8080775)
Ávila-Hernández JG, Carrillo-Inungaray ML, De-La-Cruz-Quiroz R et al (2020) Beauveria bassiana secondary metabolites: a review inside their production systems, biosynthesis, and bioactivities. Mex J Biotechnol. https://doi.org/10.29267/MXJB.2020.5.4.1. (PMID: 10.29267/MXJB.2020.5.4.1)
Awan UA, Meng L, Xia S et al (2021) Isolation, fermentation, and formulation of entomopathogenic fungi virulent against adults of Diaphorina citri. Pest Manag Sci 77:4040–4053. https://doi.org/10.1002/ps.6429. (PMID: 10.1002/ps.642933896118)
Balla A, Silini A, Cherif-Silini H et al (2021) The threat of pests and pathogens and the potential for biological control in forest ecosystems. Forests 12:1–34. https://doi.org/10.3390/f12111579. (PMID: 10.3390/f12111579)
Balog A, Hartel T, Loxdale HD, Wilson K (2017) Differences in the progress of the biopesticide revolution between the EU and other major crop-growing regions. Pest Manage Sci 73:2203–2208. https://doi.org/10.1002/ps.4596. (PMID: 10.1002/ps.4596)
Bamisile BS, Siddiqui JA, Akutse SA, Aguila LCR, Xu Y (2021) General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plants 10(10):2119. https://doi.org/10.3390/plants10102119. (PMID: 10.3390/plants10102119346859288540635)
Barnes NM, Khodse VB, Lotlikar NP et al (2018) Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech 8:1–10. https://doi.org/10.1007/s13205-017-1043-8. (PMID: 10.1007/s13205-017-1043-8)
Baron NC, Rigobelo EC (2022) Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 13:39–55. https://doi.org/10.1080/21501203.2021.1945699. (PMID: 10.1080/21501203.2021.194569935186412)
Barratt BIP, Moran VC, Bigler F, Van Lenteren JC (2018) The status of biological control and recommendations for improving uptake for the future. Biocontrol 63:155–167. https://doi.org/10.1007/s10526-017-9831-y. (PMID: 10.1007/s10526-017-9831-y)
Bederska-Łojewska D, Świątkiewicz S, Muszyńska B (2017) The use of Basidiomycota mushrooms in poultry nutrition—a review. Anim Feed Sci Technol 230:59–69. https://doi.org/10.1016/j.anifeedsci.2017.06.001. (PMID: 10.1016/j.anifeedsci.2017.06.001)
Begum N, Qin C, Ahanger MA et al (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.01068. (PMID: 10.3389/fpls.2019.01068)
Bernal SPF, Gritti MA, dos Santos VP et al (2021) Pharmaceutical biotechnological potential of filamentous fungi isolated from textile industry. Arch Microbiol 203:3933–3944. https://doi.org/10.1007/s00203-021-02379-3. (PMID: 10.1007/s00203-021-02379-334021385)
Bhatt P, Zhang W, Lin Z et al (2020) Biodegradation of allethrin by a novel fungus Fusarium proliferatum strain CF2, isolated from contaminated soils. Microorganisms 8:592. https://doi.org/10.3390/microorganisms8040593. (PMID: 10.3390/microorganisms8040593)
Bich GA, Castrillo ML, Kramer FL, Villalba LL, Zapat PD (2021) Morphological and molecular identification of entomopathogenic fungi from agricultural and forestry crops. Floresta e Ambient 28:1–11. https://doi.org/10.1590/2179-8087-FLORAM-2018-0086. (PMID: 10.1590/2179-8087-FLORAM-2018-0086)
Bolsega S, Bleich A, Basic M (2021) Synthetic microbiomes on the rise—application in deciphering the role of microbes in host health and disease. Nutrients. https://doi.org/10.3390/nu13114173. (PMID: 10.3390/nu13114173348364268621464)
Bordin ER, Frumi Camargo A, Rossetto V et al (2018) Non-toxic bioherbicides obtained from Trichoderma koningiopsis can be applied to the control of weeds in agriculture crops. Ind Biotechnol 14:157–163. https://doi.org/10.1089/ind.2018.0007. (PMID: 10.1089/ind.2018.0007)
Bradshaw CJA, Ehrlich PR, Beattie A et al (2021) Underestimating the challenges of avoiding a ghastly future. Front Conserv Sci 1:1–10. https://doi.org/10.3389/fcosc.2020.615419. (PMID: 10.3389/fcosc.2020.615419)
Bravo de Laguna F, Cabrera C, González AB et al (2022) Effect of feeding Saccharomyces cerevisiae boulardii CNCM I-1079 to sows and piglets on piglets’ immune response after vaccination against Actinobacillus pleuropneumoniae. Animals 12:2513. https://doi.org/10.3390/ani12192513. (PMID: 10.3390/ani12192513362302559558961)
Brito ODC, Hernandes I, Ferreira JCA et al (2018) Association between arbuscular mycorrhizal fungi and Pratylenchus brachyurus in maize crop. Chil J Agric Res 78:521–527. https://doi.org/10.4067/S0718-58392018000400521. (PMID: 10.4067/S0718-58392018000400521)
Cairns TC, Zheng X, Zheng P et al (2021) Turning inside out: filamentous fungal secretion and its applications in biotechnology, agriculture, and the clinic. J Fungi 7:1–36. https://doi.org/10.3390/jof7070535. (PMID: 10.3390/jof7070535)
Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60. https://doi.org/10.1002/fes3.108. (PMID: 10.1002/fes3.108)
Chacón-Orozco JG, Bueno CJ, Shapiro-Ilan DI et al (2020) Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum. Sci Rep. https://doi.org/10.1038/s41598-020-77472-6. (PMID: 10.1038/s41598-020-77472-6332440797691503)
Chakraborty A, Ray P (2021) Mycoherbicides for the noxious meddlesome: can Colletotrichum be a budding candidate? Front Microbiol. https://doi.org/10.3389/fmicb.2021.754048. (PMID: 10.3389/fmicb.2021.754048350694698696352)
Chaudhary P, Beniwal V, Kaur R et al (2019) Efficacy of aspergillus fumigatus MCC 1175 for bioremediation of tannery wastewater. Clean–Soil Air Water 47:1–11. https://doi.org/10.1002/clen.201900131. (PMID: 10.1002/clen.201900131)
Chaves Neto JR, Santos MSN, Mazutti MA et al (2021) Phoma dimorpha phytotoxic activity potentialization for bioherbicide production. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2021.101986. (PMID: 10.1016/j.bcab.2021.101986)
Chen HW, Yu YH (2020) Effect of Ganoderma lucidum extract on growth performance, fecal microbiota, and bursal transcriptome of broilers. Anim Feed Sci Technol 267:114551. https://doi.org/10.1016/j.anifeedsci.2020.114551. (PMID: 10.1016/j.anifeedsci.2020.114551)
Cheng B, Liu H, Bai J, Li J (2022) Soil fungal composition drives ecosystem multifunctionality after long-term field nitrogen and phosphorus addition in alpine meadows on the Tibetan Plateau. Plants 11:2893. https://doi.org/10.3390/plants11212893. (PMID: 10.3390/plants11212893363653459656404)
Chicca I, Becarelli S, Di Gregorio S (2022) Microbial involvement in the bioremediation of total petroleum hydrocarbon polluted soils: challenges and perspectives. Environ 9:52. https://doi.org/10.3390/environments9040052. (PMID: 10.3390/environments9040052)
Chien HL, Tsai YT, Tseng WS et al (2022) Biodegradation of PBSA films by elite Aspergillus isolates and farmland soil. Polym (Basel). https://doi.org/10.3390/polym14071320. (PMID: 10.3390/polym14071320)
Chuang WY, Hsieh YC, Lee TT (2020) The effects of fungal feed additives in animals: a review. Animals 10:1–15. https://doi.org/10.3390/ani10050805. (PMID: 10.3390/ani10050805)
Clifton EH, Jaronski ST, Coates BS et al (2018) Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE 13:1–19. https://doi.org/10.1371/journal.pone.0194815. (PMID: 10.1371/journal.pone.0194815)
Conceição AA, Mendes TD, Mendonça S et al (2022) Nutraceutical enrichment of animal feed by filamentous fungi fermentation. Fermentation 8:1–17. https://doi.org/10.3390/fermentation8080402. (PMID: 10.3390/fermentation8080402)
D’Annibale A, Rosetto F, Leonardi V et al (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36. https://doi.org/10.1128/AEM.72.1.28-36.2006. (PMID: 10.1128/AEM.72.1.28-36.2006163910211352206)
Daccò C, Nicola L, Temporiti MEE et al (2020) Trichoderma: evaluation of its degrading abilities for the bioremediation of hydrocarbon complex mixtures. Appl Sci. https://doi.org/10.3390/app10093152. (PMID: 10.3390/app10093152)
Dalla Nora D, Piovesan BC, Bellé C et al (2021) Isolation and evaluation of entomopathogenic fungi against the neotropical brown stink bug Euschistus heros (F.) (Hemiptera: Pentatomidae) under laboratory conditions. Biocontrol Sci Technol 31:22–34. https://doi.org/10.1080/09583157.2020.1826904. (PMID: 10.1080/09583157.2020.1826904)
Damalas CA (2018) Current status and recent developments in biopesticide use. Agric 8:13. https://doi.org/10.3390/agriculture8010013. (PMID: 10.3390/agriculture8010013)
Daza FFF, Roman GR, Rodriguez MV et al (2019) Spores of Beauveria bassiana and Trichoderma lignorum as a bioinsecticide for the control of Atta cephalotes. Biol Res 52:51. https://doi.org/10.1186/s40659-019-0259-y. (PMID: 10.1186/s40659-019-0259-y315302796749709)
de Oliveira DGP, Lopes RB, Rezende JM, Delalibera I (2018) Increased tolerance of Beauveria bassiana and metarhizium anisopliae conidia to high temperature provided by oil-based formulations. J Invertebr Pathol 151:151–157. https://doi.org/10.1016/j.jip.2017.11.012. (PMID: 10.1016/j.jip.2017.11.01229175530)
de Oliveira CM, Almeida NO, Côrtes MV, de CB et al (2021) Biological control of Pratylenchus brachyurus with isolates of Trichoderma spp. on soybean. Biol Control 152:104425. https://doi.org/10.1016/j.biocontrol.2020.104425. (PMID: 10.1016/j.biocontrol.2020.104425)
Deb L, Dutta P (2021) Antagonistic potential of Beauveria bassiana (Balsamo) Vuillemin against Pythium myriotylum causing damping off of tomato. Indian Phytopathol 74:715–728. https://doi.org/10.1007/s42360-021-00372-w. (PMID: 10.1007/s42360-021-00372-w)
Deb L, Dutta P, Tombisana Devi RK et al (2022) Endophytic Beauveria bassiana can protect the rice plant from sheath blight of rice caused by Rhizoctonia solani and enhance plant growth parameters. Arch Microbiol 204:1–15. https://doi.org/10.1007/s00203-022-03211-2. (PMID: 10.1007/s00203-022-03211-2)
Dedjell A, Cliquet S (2019) Media and culturing protocol using a full 2 5 factorial design for the production of submerged aggregates by the potential bio-herbicide Plectosporium alismatis against weed species of Alismataceae. Biocontrol Sci Technol 29:308–324. https://doi.org/10.1080/09583157.2018.1560393. (PMID: 10.1080/09583157.2018.1560393)
Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264. https://doi.org/10.1007/s12088-016-0584-6. (PMID: 10.1007/s12088-016-0584-6274072894920763)
Devi G (2018) Nematophagous fungi: Metarhizium anisopliae. Int J Environ Agric Biotechnol 3:2110–2113. https://doi.org/10.22161/ijeab/3.6.19. (PMID: 10.22161/ijeab/3.6.19)
Din G, Hassan A, Dunlap J et al (2022) Cadmium tolerance and bioremediation potential of filamentous fungus Penicillium chrysogenum FMS2 isolated from soil. Int J Environ Sci Technol 19:2761–2770. https://doi.org/10.1007/s13762-021-03211-7. (PMID: 10.1007/s13762-021-03211-7)
El Sayed MT, El-Sayed ASA (2020) Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon 6:e05048. https://doi.org/10.1016/j.heliyon.2020.e05048. (PMID: 10.1016/j.heliyon.2020.e05048330248607527588)
El-Sharkawy RM, Swelim MA, Hamdy GB (2022) Aspergillus tamarii mediated green synthesis of magnetic chitosan beads for sustainable remediation of wastewater contaminants. Sci Rep 12:1–15. https://doi.org/10.1038/s41598-022-13534-1. (PMID: 10.1038/s41598-022-13534-1)
Elghandour MMM, Abu Hafsa SH, Cone JW et al (2022) Prospect of yeast probiotic inclusion enhances livestock feeds utilization and performance: an overview. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02562-6. (PMID: 10.1007/s13399-022-02562-6)
Espinoza F, Vidal S, Rautenbach F et al (2019) Effects of Beauveria bassiana (Hypocreales) on plant growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L. [Amaryllidaceae]). Heliyon 5:e03038. https://doi.org/10.1016/j.heliyon.2019.e03038. (PMID: 10.1016/j.heliyon.2019.e03038318909676928240)
Feng Y, Zhang L, Li X et al (2022) Remediation of lead contamination by Aspergillus niger and phosphate rocks under different nitrogen sources. Agronomy. https://doi.org/10.3390/agronomy12071639. (PMID: 10.3390/agronomy12071639)
Fernández-Grandon GM, Harte SJ, Ewany J et al (2020) Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9:1–14. https://doi.org/10.3390/plants9020173. (PMID: 10.3390/plants9020173)
Ferreira FV, Musumeci MA (2021) Trichoderma as biological control agent: scope and prospects to improve efficacy. World J Microbiol Biotechnol 37:1–17. https://doi.org/10.1007/s11274-021-03058-7. (PMID: 10.1007/s11274-021-03058-7)
Flores BGF, Ponce IM, Espinosa MAP et al (2021) Advances in the biological control of phytoparasitic nematodes via the use of nematophagous fungi. World J Microbiol Biotechnol 37:1–14. https://doi.org/10.1007/s11274-021-03151-x. (PMID: 10.1007/s11274-021-03151-x)
Foo JL, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: current applications and its future. Biotechnol J 12:1–11. https://doi.org/10.1002/biot.201600099. (PMID: 10.1002/biot.201600099)
Frąc M, Hannula ES, Bełka M et al (2022) Soil mycobiome in sustainable agriculture. Front Microbiol 13:1–9. https://doi.org/10.3389/fmicb.2022.1033824. (PMID: 10.3389/fmicb.2022.1033824)
Frona D, Janos S, Harangi-Rakos M (2019) The challenge of feeding the poor. Sustainability 11:5816. https://doi.org/10.3390/su11205816. (PMID: 10.3390/su11205816)
Gao M, Xiong C, Gao C et al (2021) Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9:1–18. https://doi.org/10.1186/s40168-021-01138-2. (PMID: 10.1186/s40168-021-01138-2)
González-Mas N, Cuenca-Medina M, Gutiérrez-Sánchez F, Quesada-Moraga E (2019) Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J Pest Sci. https://doi.org/10.1007/s10340-019-01098-5. (PMID: 10.1007/s10340-019-01098-5)
González-Pérez E, Ortega-Amaro MA, Salazar-Badillo FB et al (2018) The Arabidopsis-Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-34500-w. (PMID: 10.1038/s41598-018-34500-w)
Goodale E, Mammides C, Mtemi W et al (2022) Increasing collaboration between China and India in the environmental sciences to foster global sustainability. Ambio 51:1474–1484. https://doi.org/10.1007/s13280-021-01681-0. (PMID: 10.1007/s13280-021-01681-034962639)
Gostinčar C, Zalar P, Gunde-Cimerman N (2022) No need for speed: slow development of fungi in extreme environments. Fungal Biol Rev 39:1–14. https://doi.org/10.1016/j.fbr.2021.11.002. (PMID: 10.1016/j.fbr.2021.11.002)
Greco MV, Franchi ML, Rico Golba SL et al (2014) Mycotoxins and mycotoxigenic fungi in poultry feed for food-producing animals. Sci World J 2014:968215. https://doi.org/10.1155/2014/968215. (PMID: 10.1155/2014/968215)
Grijalba EP, Espinel C, Cuartas PE et al (2018) Metarhizium rileyi biopesticide to control Spodoptera frugiperda: stability and insecticidal activity under glasshouse conditions. Fungal Biol 122:1069–1076. https://doi.org/10.1016/j.funbio.2018.08.010. (PMID: 10.1016/j.funbio.2018.08.01030342623)
Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00659. (PMID: 10.3389/fpls.2015.00659263796874551831)
Hassan ZU, Al Thani R, Balmas V et al (2019) Prevalence of Fusarium fungi and their toxins in marketed feed. Food Control 104:224–230. https://doi.org/10.1016/j.foodcont.2019.04.045. (PMID: 10.1016/j.foodcont.2019.04.045)
He DC, He MH, Amalin DM et al (2021) Biological control of plant diseases: an evolutionary and eco-economic consideration. Pathogens 10:1–23. https://doi.org/10.3390/pathogens10101311. (PMID: 10.3390/pathogens10101311)
Hernández VA, Galleguillos F, Thibaut R, Müller A (2019) Fungal dyes for textile applications: testing of industrial conditions for wool fabrics dyeing. J Text Inst 110:61–66. https://doi.org/10.1080/00405000.2018.1460037. (PMID: 10.1080/00405000.2018.1460037)
Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N, Singh C, Singh J, Yadav AN (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. Microb Biotechnol Microbial Biotechnol. https://doi.org/10.1007/978-981-15-6949-4_22. (PMID: 10.1007/978-981-15-6949-4_22)
Hoagland RE, Boyette CD (2021) Effects of the fungal bioherbicide, Alternaria cassia on peroxidase, pectinolytic and proteolytic activities in sicklepod seedlings. J Fungi 7:1–9. https://doi.org/10.3390/jof7121032. (PMID: 10.3390/jof7121032)
Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341. https://doi.org/10.1016/j.tim.2013.04.002. (PMID: 10.1016/j.tim.2013.04.002236850693708484)
Huidobro G, Bernal R, Wagner S (2021) Post-fire regeneration of the palm mauritia flexuosa in vichada, Orinoco region of Colombia. In: W Leal Filho, UM Azeiteiro, AFF Setti (eds) Sustainability in natural resources management and land planning. world sustainability series. Springer, Cham. https://doi.org/10.1007/978-3-030-76624-5_26. (PMID: 10.1007/978-3-030-76624-5_26)
Islam W, Adnan M, Shabbir A, Naveed H, Abubakar YS, Qasim M, Tayyab M, Noman A, Nisar MS, Khan KA, Ali H (2021) Insect-fungal-interactions: a detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 159:105122. https://doi.org/10.1016/j.micpath.2021.105122. (PMID: 10.1016/j.micpath.2021.10512234352375)
Islam MS, Subbiah VK, Siddiquee S (2022) Efficacy of entomopathogenic Trichoderma isolates against sugarcane woolly aphid, Ceratovacuna lanigera zehntner (Hemiptera: Aphididae). Horticulturae. https://doi.org/10.3390/horticulturae8010002. (PMID: 10.3390/horticulturae8010002)
Iram S, Zaman A, Iqbal Z, Shabbir R (2013) Heavy metal tolerance of fungus isolated from the soil contaminated with sewage and industrial wastewater. Pol J Environ Stud 22(3):691–697.
Jaber LR, Ownley BH (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45. https://doi.org/10.1016/j.biocontrol.2017.01.018. (PMID: 10.1016/j.biocontrol.2017.01.018)
Jayasekara SK, Ratnayake RR (2022) The bioremediation of agricultural soils polluted with pesticides. Microb Syntrophy-Mediated Eco-enterprising. https://doi.org/10.1016/B978-0-323-99900-7.00007-9. (PMID: 10.1016/B978-0-323-99900-7.00007-9)
Jousset A, Lee SW (2023) Coming of age for the rhizosphere microbiome transplantation. Soil Ecol Lett 5:4–5. https://doi.org/10.1007/s42832-022-0151-5. (PMID: 10.1007/s42832-022-0151-5)
Kadiru S, Patil S, D’Souza R (2022) Effect of pesticide toxicity in aquatic environments: a recent review. Int J Fish Aquat Stud 10:113–118. https://doi.org/10.22271/fish.2022.v10.i3b.2679. (PMID: 10.22271/fish.2022.v10.i3b.2679)
Kaur P, Balomajumder C (2020) Bioremediation process optimization and effective reclamation of mixed carbamate-contaminated soil by newly isolated Acremonium sp. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.125982. (PMID: 10.1016/j.chemosphere.2020.12598233190910)
Khilji SA, Aqeel M, Maqsood MF et al (2021) Hemarthria compressa—Aspergillus niger—Trichoderma pseudokoningii mediated trilateral perspective for bioremediation and detoxification of industrial paper sludge. Sustainability. https://doi.org/10.3390/su132112266. (PMID: 10.3390/su132112266)
Kidanu S (2020) Research and application of entomopathogenic fungi as pest management option: a review. J Environ Earth Sci 10:31–39. https://doi.org/10.7176/jees/10-3-03. (PMID: 10.7176/jees/10-3-03)
Knowles SL, Raja HA, Roberts CD, Oberlies NH (2022) Fungal–fungal co-culture: a primer for generating chemical diversity. Nat Prod Rep 39:1557–1573. https://doi.org/10.1039/D1NP00070E. (PMID: 10.1039/D1NP00070E351377589384855)
Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:1–19. https://doi.org/10.3389/fpls.2019.00845. (PMID: 10.3389/fpls.2019.00845)
Korneykova MV, Myazin VA, Fokina NV, Chaporgina AA (2021) Bioremediation of soil of the kola peninsula (Murmansk region) contaminated with diesel fuel. Geogr Environ Sustain 14:171–176. https://doi.org/10.24057/2071-9388-2019-170. (PMID: 10.24057/2071-9388-2019-170)
Kollár J, Bakay L, Pástor M (2016) First record of the cottony cushion scale Icerya purchasi (Hemiptera, Monophlebidae) in Slovakia – Short communication. Plant Prot Sci 52(3):217–219. https://doi.org/10.17221/23/2016-PPS.
Kumar KK, Arthurs S (2021) Recent advances in the biological control of citrus nematodes: a review. Biol Control  https://doi.org/10.1016/j.biocontrol.2021.104593. (PMID: 10.1016/j.biocontrol.2021.104593)
Kumar J, Ramlal A, Mallick D, Mishra V (2021a) An overview of some biopesticides and their importance in Plant Protection for commercial acceptance. Plants 10:1185. https://doi.org/10.3390/plants10061185. (PMID: 10.3390/plants10061185342008608230470)
Kumar V, Singh M, Sehrawat N et al (2021b) Mycoherbicide control strategy: concept, constraints, and advancements. Biopestic Int 17:29–40.
Lahlali R, Ezrari S, Radouane N et al (2022) Biological control of plant pathogens: a global perspective. Microorganisms 9:596. https://doi.org/10.3390/microorganisms10030596. (PMID: 10.3390/microorganisms10030596)
León-Santiesteban HH, Wrobel K, Revah S, Tomasini A (2016) Pentachlorophenol removal by Rhizopus oryzae CDBB-H-1877 using sorption and degradation mechanisms. J Chem Technol Biotechnol 91:65–71. https://doi.org/10.1002/jctb.4566. (PMID: 10.1002/jctb.4566)
Li F, Zhang S, Wang Y et al (2020a) Rare fungus, Mortierella capitata, promotes crop growth by stimulating primary metabolisms related genes and reshaping rhizosphere bacterial community. Soil Biol Biochem 151:108017. https://doi.org/10.1016/j.soilbio.2020.108017. (PMID: 10.1016/j.soilbio.2020.108017)
Li Q, Liu J, Gadd GM (2020b) Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl Microbiol Biotechnol 104:8999–9008. https://doi.org/10.1007/s00253-020-10854-y. (PMID: 10.1007/s00253-020-10854-y329407357567682)
Lira MMA, Bernal SPF, Castro CCJ et al (2022) Filamentous fungi from textile effluent and their potential application for bioremediation process. An Acad Bras Cienc 94:1–12. https://doi.org/10.1590/0001-3765202220201020. (PMID: 10.1590/0001-3765202220201020)
Liu Y, Yang Y, Wang B (2022) Entomopathogenic fungi Beauveria bassiana and metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-19899-7. (PMID: 10.1038/s41598-022-19899-7)
López Plantey R, Papura D, Couture C et al (2019) Characterization of entomopathogenic fungi from vineyards in Argentina with potential as biological control agents against the european grapevine moth Lobesia botrana. Biocontrol 64:501–511. https://doi.org/10.1007/s10526-019-09955-z. (PMID: 10.1007/s10526-019-09955-z)
Lu H, Wei T, Lou H, Shu X, Chen Q (2021) A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J Fungi 7:719. https://doi.org/10.3390/jof7090719. (PMID: 10.3390/jof7090719)
Lupini S, Nguyen HN, Morales D et al (2023) Diversity of fungal microbiome obtained from plant rhizoplanes. Sci Total Environ 892:164506. https://doi.org/10.1016/j.scitotenv.2023.164506. (PMID: 10.1016/j.scitotenv.2023.16450637295515)
Machado ACZ (2022) Bionematicides in Brazil: an emerging and challenging market. Rev Anu Patol Plant. https://doi.org/10.31976/0104-038321v280002. (PMID: 10.31976/0104-038321v280002)
Mącik M, Gryta A, Frąc M (2020) Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Adv Agron 162:31–87. https://doi.org/10.1016/bs.agron.2020.02.001. (PMID: 10.1016/bs.agron.2020.02.001)
Mahmoodian S, Kowsari M, Motallebi M et al (2022) Effect of improved Trichoderma harzianum on growth and resistance promotion in bean plant. Brazilian Arch Biol Technol. https://doi.org/10.1590/1678-4324-2022210671. (PMID: 10.1590/1678-4324-2022210671)
Maina UM, Um M, Zakaria D et al (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Stud 6:27–32.
Mann AJ, Davis TS (2021) Entomopathogenic fungi to control bark beetles: a review of ecological recommendations. Pest Manag Sci 77:3841–3846. https://doi.org/10.1002/ps.6364. (PMID: 10.1002/ps.636433728813)
Mantzoukas S, Eliopoulos PA (2020) Endophytic entomopathogenic fungi: a valuable biological control tool against plant pests. Appl Sci. https://doi.org/10.3390/app10010360. (PMID: 10.3390/app10010360)
Mantzoukas S, Kitsiou F, Natsiopoulos D, Eliopoulos PA (2022) Entomopathogenic fungi: interactions and applications. Encyclopedia 2(2):646–656. https://doi.org/10.3390/encyclopedia2020044. (PMID: 10.3390/encyclopedia2020044)
Mascarin GM, Lopes RB, Delalibera Í et al (2019) Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J Invertebr Pathol 165:46–53. https://doi.org/10.1016/j.jip.2018.01.001. (PMID: 10.1016/j.jip.2018.01.00129339191)
Mauricio-Castillo JA, Salas-Muñoz S, Reveles-Torres LR et al (2020) Could Alternaria solani IA300 be a plant growth-promoting fungus? Eur J Plant Pathol 157:413–419. https://doi.org/10.1007/s10658-020-01984-0. (PMID: 10.1007/s10658-020-01984-0)
Medaura MC, Guivernau M, Moreno-Ventas X et al (2021) Bioaugmentation of native fungi, an efficient strategy for the bioremediation of an aged industrially polluted soil with heavy hydrocarbons. Front Microbiol 12:1–18. https://doi.org/10.3389/fmicb.2021.626436. (PMID: 10.3389/fmicb.2021.626436)
Mehdizadeh M, Mushtaq W (2019) Biological control of weeds by allelopathic compounds from different plants: a bioherbicide approach. In: Egbuna C, Sawicka B (eds) Natural remedies for pest, disease and weed control. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-819304-4.00009-9. (PMID: 10.1016/B978-0-12-819304-4.00009-9)
Membang G, Ambang Z, Mahot HC et al (2021) Thermal response and horizontal transmission of cameroonian isolates of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae – candidates for microbial controls of the banana root borer Cosmopolites sordidus. Fungal Ecol 50:101042. https://doi.org/10.1016/j.funeco.2021.101042. (PMID: 10.1016/j.funeco.2021.101042)
Méndez-González F, Castillo-Minjarez JM, Loera O, Favela-Torres E (2022) Current developments in the resistance, quality, and production of entomopathogenic fungi. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-022-03301-9. (PMID: 10.1007/s11274-022-03301-935581403)
Miranda-Fuentes P, García-Carneros AB, Montilla-Carmona AM, Molinero-Ruiz L (2020) Evidence of soil-located competition as the cause of the reduction of sunflower Verticillium wilt by entomopathogenic fungi. Plant Pathol 69:1492–1503. https://doi.org/10.1111/ppa.13230. (PMID: 10.1111/ppa.13230)
Moreno-Gavíra A, Huertas V, Diánez F et al (2020) Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants 9:1–28. https://doi.org/10.3390/plants9121746. (PMID: 10.3390/plants9121746)
Mousumi Das M, Haridas M, Sabu A (2020) Process development for the enhanced production of bio-nematicide Purpureocillium lilacinum KU8 under solid-state fermentation. Bioresour Technol 308:123328. https://doi.org/10.1016/j.biortech.2020.123328. (PMID: 10.1016/j.biortech.2020.12332832280004)
Mukherjee A, Debnath P, Ghosh SK, Medda PK (2020) Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33:1–10. https://doi.org/10.1007/s42535-019-00072-x. (PMID: 10.1007/s42535-019-00072-x)
Mukhopadhyay R, Kumar D (2020) Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control. https://doi.org/10.1186/s41938-020-00333-x. (PMID: 10.1186/s41938-020-00333-x)
Muneer MA, Huang X, Hou W et al (2021) Response of fungal diversity, community composition, and functions to nutrients management in red soil. J Fungi. https://doi.org/10.3390/jof7070554. (PMID: 10.3390/jof7070554)
Muñiz-Paredes F, Miranda-Hernández F, Loera O (2017) Production of conidia by entomopathogenic fungi: from inoculants to final quality tests. World J Microbiol Biotechnol 33:57. https://doi.org/10.1007/s11274-017-2229-2. (PMID: 10.1007/s11274-017-2229-228229333)
Nasehi M, Torbatinejad NM, Zerehdaran S, Safaie AR (2017) Effect of solid-state fermentation by oyster mushroom (Pleurotus florida) on nutritive value of some agro by-products. J Appl Anim Res 45:221–226. https://doi.org/10.1080/09712119.2016.1150850. (PMID: 10.1080/09712119.2016.1150850)
Njoku KL, Akinyede OR, Obidi OF (2020) Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. Sci Afr 10:e00545. https://doi.org/10.1016/j.sciaf.2020.e00545. (PMID: 10.1016/j.sciaf.2020.e00545)
O’Brien PA (2017) Biological control of plant diseases. Australas Plant Pathol 46:293–304. https://doi.org/10.1007/s13313-017-0481-4. (PMID: 10.1007/s13313-017-0481-4)
O’Sullivan CA, Belt K, Thatcher LF (2021) Tackling control of a cosmopolitan phytopathogen: Sclerotinia. Front Plant Sci 12:1–18. https://doi.org/10.3389/fpls.2021.707509. (PMID: 10.3389/fpls.2021.707509)
Omomowo OI, Babalola OO (2019) Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 7:481. https://doi.org/10.3390/microorganisms7110481. (PMID: 10.3390/microorganisms7110481316528436921065)
Ozimek E, Hanaka A (2021) Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agric 11:1–18. https://doi.org/10.3390/agriculture11010007. (PMID: 10.3390/agriculture11010007)
Parsa S, Ortiz V, Gómez-Jiménez MI et al (2018) Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris. Biol Control 116:74–81. https://doi.org/10.1016/j.biocontrol.2016.09.001. (PMID: 10.1016/j.biocontrol.2016.09.001293021565738971)
Pathma J, Kennedy RK, Bhushan LS et al (2021) Microbial biofertilizers and biopesticides: nature’s assets fostering sustainable agriculture. In: Prasad R, Kumar V, Singh J, Upadhaya CP (eds) Recent developments in microbial technologies. Springer, Berlin. https://doi.org/10.1007/978-981-15-4439-2_2. (PMID: 10.1007/978-981-15-4439-2_2)
Perricone V, Sandrini S, Irshad N et al (2022) The role of yeast Saccharomyces cerevisiae in supporting gut health in horses: an updated review on its effects on digestibility and intestinal and fecal microbiota. Animals 12:3475. https://doi.org/10.3390/ani12243475. (PMID: 10.3390/ani12243475365523969774806)
Pest Disease and Weed Control.
Poirier M, Hugot C, Spatz M et al (2022) Effects of five filamentous fungi used in food processes on in vitro and in vivo gut inflammation. J Fungi. https://doi.org/10.3390/jof8090893. (PMID: 10.3390/jof8090893)
Poudel M, Mendes R, Costa LAS et al (2021) The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation. Front Microbiol 12:1–21. https://doi.org/10.3389/fmicb.2021.743512. (PMID: 10.3389/fmicb.2021.743512)
Qadri M, Short S, Gast K et al (2020) Microbiome innovation in agriculture: development of microbial based tools for insect pest management. Front Sustain 4:547751. https://doi.org/10.3389/fsufs.2020.547751. (PMID: 10.3389/fsufs.2020.547751)
Quesada-Morag E, González-Mas N, Yousef-Yousef M, Garrido-Jurado I, Fernández-Bravo M (2023) Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J Pest Sci. https://doi.org/10.1007/s10340-023-01622-8. (PMID: 10.1007/s10340-023-01622-8)
Rahamim V, Nakonechny F, Azagury A, Nisnevitch M (2022) Continuous bioethanol production by fungi and yeast working in Tandem. Energies 15:4338. https://doi.org/10.3390/en15124338. (PMID: 10.3390/en15124338)
Rajula J, Rahman A, Krutmuang P (2020) Entomopathogenic fungi in Southeast Asia and Africa and their possible adoption in biological control. Biol Control 151:104399. https://doi.org/10.1016/j.biocontrol.2020.104399. (PMID: 10.1016/j.biocontrol.2020.104399)
Ramírez-Guzmán N, Chávez-González M, Sepúlveda-Torre L et al (2020) Significant advances in biopesticide production strategies for high-density bio-inoculant cultivation. In: Singh JS, Vimal SR (eds) Microbial Services in Restoration Ecology. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-819978-7.00001-4. (PMID: 10.1016/B978-0-12-819978-7.00001-4)
Raymaekers K, Ponet L, Holtappels D et al (2020) Screening for novel biocontrol agents applicable in plant disease management—a review. Biol Control 144:104240. https://doi.org/10.1016/j.biocontrol.2020.104240. (PMID: 10.1016/j.biocontrol.2020.104240)
Reichert Júnior FW, Scariot MA, Forte CT et al (2019) New perspectives for weeds control using autochthonous fungi with selective bioherbicide potential. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01676. (PMID: 10.1016/j.heliyon.2019.e01676311930936517331)
Reveco-Urzua FE, Hofossæter M, Kovi MR et al (2019) Candida utilis yeast as a functional protein source for Atlantic salmon (Salmo salar L.): local intestinal tissue and plasma proteome responses. PLoS ONE 14:1–22. https://doi.org/10.1371/journal.pone.0218360. (PMID: 10.1371/journal.pone.0218360)
Rivas-Franco F, Hampton JG, Morán-Diez ME et al (2019) Effect of coating maize seed with entomopathogenic fungi on plant growth and resistance against Fusarium graminearum and Costelytra giveni. Biocontrol Sci Technol 29:877–900. https://doi.org/10.1080/09583157.2019.1611736. (PMID: 10.1080/09583157.2019.1611736)
Roberts J, Florentine S, Fernando WGD, Tennakoon KU (2022) Achievements, developments and future challenges in the field of bioherbicides for weed control: a global review. Plants 11:1–18. https://doi.org/10.3390/plants11172242. (PMID: 10.3390/plants11172242)
Rokas A (2022) Evolution of the human pathogenic lifestyle in fungi. Nat Rev Microbiol 7:607–619. https://doi.org/10.1038/s41564-022-01112-0. (PMID: 10.1038/s41564-022-01112-0)
Ruiu L (2018) Microbial biopesticides in agroecosystems. Agronomy 8:235. https://doi.org/10.3390/agronomy8110235. (PMID: 10.3390/agronomy8110235)
Rumble H, Finch P, Gange AC (2022) Can microbial inoculants boost soil food webs and vegetation development on newly constructed extensive green roofs? Urban For Urban Green 75:127684. https://doi.org/10.1016/j.ufug.2022.127684. (PMID: 10.1016/j.ufug.2022.127684)
Sabuda MC, Rosenfeld CE, DeJournett TD et al (2020) Fungal bioremediation of selenium-contaminated industrial and municipal wastewaters. Front Microbiol. https://doi.org/10.3389/fmicb.2020.02105. (PMID: 10.3389/fmicb.2020.02105330137697507899)
Sala A, Barrena R, Artola A, Sánchez A (2019) Current developments in the production of fungal biological control agents by solid-state fermentation using organic solid waste. Crit Rev Environ Sci Technol 49:655–694. https://doi.org/10.1080/10643389.2018.1557497. (PMID: 10.1080/10643389.2018.1557497)
Sánchez-Montesinos B, Diánez F, Moreno-Gavira A et al (2019) Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. Int J Environ Res Public Health 16:1–11. https://doi.org/10.3390/ijerph16112053. (PMID: 10.3390/ijerph16112053)
Sani I, Ismail SI, Abdullah S et al (2020) A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 11:1–18. https://doi.org/10.3390/insects11090619. (PMID: 10.3390/insects11090619)
Sarven MS, Hao Q, Deng J et al (2020) Biological control of tomato gray mold caused by Botrytis cinerea with the entomopathogenic fungus Metarhizium anisopliae. Pathogens. https://doi.org/10.3390/pathogens9030213. (PMID: 10.3390/pathogens9030213321830557157576)
Schein D, Santos MSN, Schmaltz S et al (2022) Microbial prospection for bioherbicide production and evaluation of methodologies for maximizing phytotoxic activity. Processes 10:2001. https://doi.org/10.3390/pr10102001. (PMID: 10.3390/pr10102001)
Schleiffer M, Speiser B (2022) Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the european organic food chain—a review. Environ Pollut 313:120116. https://doi.org/10.1016/j.envpol.2022.120116. (PMID: 10.1016/j.envpol.2022.12011636084735)
Sebayang A, Tenrirawe A, Mirsam H (2021) Exploration of entomopathogenic fungi as potential biocontrol of corn earworm (Helicoverpa armigera (Hübner). IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/911/1/012064. (PMID: 10.1088/1755-1315/911/1/012064)
Seenivasagan R, Babalola OO (2021) Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product. Biology (Basel). https://doi.org/10.3390/biology10111111. (PMID: 10.3390/biology1011111134827104)
Segaran G, Sathiavelu M (2019) Fungal endophytes: a potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol 21:101284. https://doi.org/10.1016/j.bcab.2019.101284. (PMID: 10.1016/j.bcab.2019.101284)
Sehrawat A, Sindhu SS (2019) Potential of biocontrol agents in plant disease control for improving food safety. Def Life Sci J 4:220–225. https://doi.org/10.14429/dlsj.4.14966. (PMID: 10.14429/dlsj.4.14966)
Sharma A, Gupta A, Dalela M et al (2020) Linking organic metabolites as produced by Purpureocillium lilacinum 6029 cultured on karanja deoiled cake medium for the sustainable management of root-knot nematodes. Sustain 12:1–9. https://doi.org/10.3390/su12198276. (PMID: 10.3390/su12198276)
Sharma L, Bohra N, Rajput VD et al (2021) Advances in entomopathogen isolation: a case of bacteria and fungi. Microorganisms 9:1–25. https://doi.org/10.3390/microorganisms9010016. (PMID: 10.3390/microorganisms9010016)
Sharma MK, White DL, Singh AK et al (2022) Effect of dietary supplementation of probiotic Aspergillus niger on performance and cecal microbiota in hy-line W-36 laying hens. Animals 12:1–9. https://doi.org/10.3390/ani12182406. (PMID: 10.3390/ani12182406)
Shayanthan A, Ordoñez PAC, Oresnik IJ (2022) The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front Agron 4:1–13. https://doi.org/10.3389/fagro.2022.896307. (PMID: 10.3389/fagro.2022.896307)
Shi W, Zhang X, Jia H et al (2017) Effective remediation of aged HMW-PAHs polluted agricultural soil by the combination of Fusarium sp. and smooth bromegrass (Bromus inermis Leyss). J Integr Agric 16:199–209. https://doi.org/10.1016/S2095-3119(16)61373-4. (PMID: 10.1016/S2095-3119(16)61373-4)
Silva DM, de Souza VHM, de Moral RA et al (2022) Production of Purpureocillium lilacinum and pochonia chlamydosporia by submerged liquid fermentation and bioactivity against Tetranychus urticae and Heterodera glycines through seed inoculation. J Fungi. https://doi.org/10.3390/jof8050511. (PMID: 10.3390/jof8050511)
Singh A, Bhardwaj R, Singh IK (2019) Biocontrol agents: potential of biopesticides for integrated pest management. In: Giri B, Prasad R, Wu Q-S, Varma A (eds) Biofertilizers for sustainable agriculture and environment. Soil Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_19. (PMID: 10.1007/978-3-030-18933-4_19)
Siqueira ACO, Mascarin GM, Gonçalves CRNCB et al (2020) Multi-trait biochemical features of Metarhizium species and their activities that stimulate the growth of tomato plants. Front Sustain Food Syst 4:1–15. https://doi.org/10.3389/fsufs.2020.00137. (PMID: 10.3389/fsufs.2020.00137)
Smolińska U, Kowalska B (2018) Burkholderia gladioli associated with soft rot of onion bulbs in Poland. J Plant Pathol 97:37–43.
Souza DA, de Oliveira CM, Tamai MA et al (2021) First report on the natural occurrence of entomopathogenic fungi in populations of the leafhopper Dalbulus maidis (Hemiptera: Cicadellidae): pathogen identifications and their incidence in maize crops. Fungal Biol 125:980–988. https://doi.org/10.1016/j.funbio.2021.08.004. (PMID: 10.1016/j.funbio.2021.08.00434776235)
Stoyanova K, Gerginova M, Dincheva I et al (2022) Biodegradation of naphthalene and anthracene by Spergillus glaucus strain isolated from Antarctic Soil. Processes 10:1–14. https://doi.org/10.3390/pr10050873. (PMID: 10.3390/pr10050873)
Sucu E, Moore C, Vanbaale MJ et al (2019) Effects of feeding Aspergillus oryzae fermentation product to transition holstein cows on performance and health. Can J Anim Sci 99:237–243. https://doi.org/10.1139/cjas-2018-0037. (PMID: 10.1139/cjas-2018-0037)
Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111. https://doi.org/10.1016/j.plantsci.2017.11.012. (PMID: 10.1016/j.plantsci.2017.11.01229362088)
Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:6213. https://doi.org/10.1126/science.125668. (PMID: 10.1126/science.125668)
Thambugala KM, Daranagama DA, Phillips AJL, Kannangara SD, Promputtha I (2020) Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.604923. (PMID: 10.3389/fcimb.2020.604923333301427734056)
Todero I, Confortin TC, Luft L et al (2018) Formulation of a bioherbicide with metabolites from Phoma sp. Sci Hortic (Amsterdam) 241:285–292. https://doi.org/10.1016/j.scienta.2018.07.009. (PMID: 10.1016/j.scienta.2018.07.009)
Tshikantwa TS, Ullah MW, He F, Yang G (2018) Current trends and potential applications of microbial interactions for human welfare. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01156. (PMID: 10.3389/fmicb.2018.01156299107885992746)
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-ściseł J (2022) Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int J Mol Sci. https://doi.org/10.3390/ijms23042329. (PMID: 10.3390/ijms23042329352164448875981)
Uwineza C, Sar T, Mahboubi A, Taherzadeh MJ (2021) Evaluation of the cultivation of Aspergillus oryzae on organic waste-derived vfa effluents and its potential application as alternative sustainable nutrient source for animal feed. Sustainability. https://doi.org/10.3390/su132212489. (PMID: 10.3390/su132212489)
Vandenberghe LPS, Pandey A, Carvalho JC et al (2021) Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Syst Microbiol Biomanufacturing 1:142–165. https://doi.org/10.1007/s43393-020-00015-7. (PMID: 10.1007/s43393-020-00015-7)
Vasconcelos H, Ara MR, Pereira C (2013) Trichoderma: interações e estratégias. In: Trichoderma: uso na agricultura 219–234.
Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110:4–30. https://doi.org/10.1080/00275514.2017.1418578. (PMID: 10.1080/00275514.2017.141857829863999)
Veignie E, Rafin C (2022) Efficiency of Penicillium canescens in dissipating PAH in industrial aged contaminated soil microcosms and its impact on soil organic matter and ecotoxicity. Processes 10:532. https://doi.org/10.3390/pr10030532. (PMID: 10.3390/pr10030532)
Verma D, Banjo T, Chawan M et al (2019) Microbial control of pests and weeds. In: Egbuna C, Sawicka B (eds) Natural remedies for pest, disease and weed control. Academic Press, Cambridge.
Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ (2022) Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Front Plant Sci. https://doi.org/10.3389/fpls.2022.953836. (PMID: 10.3389/fpls.2022.953836366847319638123)
Větrovský T, Kohout P, Kopecký M et al (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-13164-8. (PMID: 10.1038/s41467-019-13164-8)
Větrovský T, Morais D, Kohout P et al (2020) GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 7:228. https://doi.org/10.1038/s41597-020-0567-7. (PMID: 10.1038/s41597-020-0567-7326612377359306)
Villamizar LF, Barrera G, Hurst M, Glare TR (2021) Characterization of a new strain of Metarhizium novozealandicum with potential to be developed as a biopesticide. Mycology 12:261–278. https://doi.org/10.1080/21501203.2021.1935359. (PMID: 10.1080/21501203.2021.1935359349003818654417)
Vorlaphim T, Paengkoum P, Purba RAP et al (2021) Treatment of rice stubble with pleurotus ostreatus and urea improves the growth performance in slow-growing goats. Animals 11:1–10. https://doi.org/10.3390/ani11041053. (PMID: 10.3390/ani11041053)
Wan-Mohtar WAAQI, Taufek NM, Thiran JP et al (2021) Investigations on the use of exopolysaccharide derived from mycelial extract of Ganoderma lucidum as functional feed ingredient for aquaculture-farmed red hybrid Tilapia (Oreochromis sp). Futur Foods 3:100018. https://doi.org/10.1016/j.fufo.2021.100018. (PMID: 10.1016/j.fufo.2021.100018)
Wang A, Peng S, Lian Y et al (2022) Distribution and interaction of the suitable areas of Beauveria bassiana and Bactrocera dorsalis (Hendel). Front Ecol Evol 10:1–9. https://doi.org/10.3389/fevo.2022.990747. (PMID: 10.3389/fevo.2022.990747)
Ware IM, Van Nuland ME, Yang ZK et al (2021) Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun Biol 4:748. https://doi.org/10.1038/s42003-021-02244-5. (PMID: 10.1038/s42003-021-02244-5341354648209103)
Wyckhuys KAG, Hughes AC, Buamas C et al (2019) Biological control of an agricultural pest protects tropical forests. Commun Biol. https://doi.org/10.1038/s42003-018-0257-6. (PMID: 10.1038/s42003-018-0257-6306231066323051)
Xiao P, Kondo R (2020) Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane. J Microbiol 58:395–404. https://doi.org/10.1007/s12275-020-9492-x. (PMID: 10.1007/s12275-020-9492-x32266564)
Xu X, Hao R, Xu H, Lu A (2020) Removal mechanism of pb(II) by Penicillium polonicum: immobilization, adsorption, and bioaccumulation. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-66025-6. (PMID: 10.1038/s41598-020-66025-6)
Yadav R, Singh S, Singh AN (2022) Biopesticides: current status and future prospects. Proc Int Acad Ecol Environ Sci 12(3):211–233.
Yi X, Guo Y, Khan RAA, Fan Z (2021) Understanding the pathogenicity of Pochonia chlamydosporia to root knot nematode through omics approaches and action mechanism. Biol Control 162:104726. https://doi.org/10.1016/j.biocontrol.2021.104726. (PMID: 10.1016/j.biocontrol.2021.104726)
Yuan X, Hong S, Xiong W et al (2021) Development of fungal-mediated soil suppressiveness against Fusarium wilt disease via plant residue manipulation. Microbiome 9:1–15. https://doi.org/10.1186/s40168-021-01133-7. (PMID: 10.1186/s40168-021-01133-7)
Zaynab M, Fatima M, Abbas S et al (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202. https://doi.org/10.1016/j.micpath.2018.08.034. (PMID: 10.1016/j.micpath.2018.08.03430145251)
Zelante T, Costantini C, Romani L (2020) Microbiome-mediated regulation of anti-fungal immunity. Curr Opin Microbiol 58:8–14. https://doi.org/10.1016/j.mib.2020.05.002. (PMID: 10.1016/j.mib.2020.05.00232544798)
Zhan J, Qin Y, Gao K et al (2021) Efficacy of a chitin-based water-soluble derivative in inducing Purpureocillium lilacinum against nematode disease (Meloidogyne incognita). Int J Mol Sci. https://doi.org/10.3390/ijms22136870. (PMID: 10.3390/ijms22136870350086728745729)
Zhang Y, Yang X, Zhu Y et al (2019) Biological control of Solidago canadensis using a bioherbicide isolate of Sclerotium rolfsii SC64 increased the biodiversity in invaded habitats. Biol Control 139:104093. https://doi.org/10.1016/j.biocontrol.2019.104093. (PMID: 10.1016/j.biocontrol.2019.104093)
Zhang K, Bonito G, Hsu CM et al (2020a) Mortierella elongata increases plant biomass among non-leguminous crop species. Agronomy 10:1–8. https://doi.org/10.3390/agronomy10050754. (PMID: 10.3390/agronomy10050754)
Zhang Y, Li S, Li H et al (2020b) Fungi–nematode interactions: diversity, ecology, and biocontrol prospects in agriculture. J Fungi 6:1–24. https://doi.org/10.3390/jof6040206. (PMID: 10.3390/jof6040206)
Zhang XC, Jiang M, Zang YN et al (2022) Metarhizium anisopliae is a valuable grist for biocontrol in beta-cypermethrin-resistant Blattella germanica (L). Pest Manag Sci 78:1508–1518. https://doi.org/10.1002/ps.6769. (PMID: 10.1002/ps.676934962342)
Zhao Q, Ye L, Wang Z et al (2021) Sustainable control of the rice pest, Nilaparvata lugens, using the entomopathogenic fungus Isaria javanica. Pest Manag Sci 77:1452–1464. https://doi.org/10.1002/ps.6164. (PMID: 10.1002/ps.616433128435)
Zhou LS, Tang K, Guo SX (2018) The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions. Int J Mol Sci 19:1–14. https://doi.org/10.3390/ijms19010270. (PMID: 10.3390/ijms19010270)
Zhu MC, Li XM, Zhao N et al (2022) Regulatory mechanism of trap formation in the nematode-trapping fungi. J Fungi. https://doi.org/10.3390/jof8040406. (PMID: 10.3390/jof8040406)
معلومات مُعتمدة: 308936/2017-5; 428180/2018-3 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 21/2551-0002253-1 Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
فهرسة مساهمة: Keywords: Bioengineering; Food security; Fungal biotechnology; Fungi biodiversity; Sustainable management
المشرفين على المادة: 0 (Soil)
تواريخ الأحداث: Date Created: 20230826 Date Completed: 20230828 Latest Revision: 20231009
رمز التحديث: 20240628
DOI: 10.1007/s11274-023-03728-8
PMID: 37632593
قاعدة البيانات: MEDLINE