دورية أكاديمية

Marine heatwaves are not a dominant driver of change in demersal fishes.

التفاصيل البيبلوغرافية
العنوان: Marine heatwaves are not a dominant driver of change in demersal fishes.
المؤلفون: Fredston AL; Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA. fredston@ucsc.edu., Cheung WWL; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada., Frölicher TL; Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland.; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland., Kitchel ZJ; Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA., Maureaud AA; Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA., Thorson JT; Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA., Auber A; Institut Français de Recherche pour l'Exploitation de la MER (Ifremer), Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur-Mer, France., Mérigot B; MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France., Palacios-Abrantes J; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada., Palomares MLD; Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada., Pecuchet L; The Arctic University of Norway, Tromsø, Norway., Shackell NL; Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada., Pinsky ML; Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.; Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
المصدر: Nature [Nature] 2023 Sep; Vol. 621 (7978), pp. 324-329. Date of Electronic Publication: 2023 Aug 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Biomass* , Fishes*/classification , Fishes*/physiology , Extreme Heat*/adverse effects, Animals ; Europe ; Fisheries/statistics & numerical data ; North America ; Biodiversity
مستخلص: Marine heatwaves have been linked to negative ecological effects in recent decades 1,2 . If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities 3,4 . However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear. We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of continental shelf ecosystems in North America and Europe spanning the subtropics to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were often minimal and could not be distinguished from natural and sampling variability. Furthermore, marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in these ecosystems. Although steep declines in biomass occasionally occurred after marine heatwaves, these were the exception, not the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or community turnover in fish communities that support many of the world's largest and most productive fisheries.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019). (PMID: 10.1038/s41558-019-0412-1)
Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 7, eabh0895 (2021). (PMID: 3459714210.1126/sciadv.abh0895)
Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020). (PMID: 32317685717432210.1038/s41598-020-63650-z)
Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018). (PMID: 10.1038/s41558-018-0187-9)
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016). (PMID: 10.1016/j.pocean.2015.12.014)
Auth, T. D., Daly, E. A., Brodeur, R. D. & Fisher, J. L. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob. Change Biol. 24, 259–272 (2018). (PMID: 10.1111/gcb.13872)
Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021). (PMID: 33737519797376310.1038/s41598-021-83818-5)
Le Grix, N., Zscheischler, J., Rodgers, K. B., Yamaguchi, R. & Frölicher, T. L. Hotspots and drivers of compound marine heatwaves and low net primary production extremes. Biogeosciences 19, 5807–5835 (2022). (PMID: 10.5194/bg-19-5807-2022)
Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
Mills, K. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the northwest Atlantic. Oceanography 26, 191–195 (2013).
Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7, 703 (2020). (PMID: 10.3389/fmars.2020.00703)
Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).
The State of World Fisheries and Aquaculture 2020 (FAO, 2020); https://doi.org/10.4060/ca9229en .
Oliver, E. C. J. et al. Marine heatwaves. Annu. Rev. Mar. Sci. 13, 313–342 (2021).
Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014). (PMID: 10.3390/rs61111579)
Craig, J. K. et al. Ecosystem Status Report for the U.S. South Atlantic Region (National Oceanic and Atmospheric Administration, 2021); https://doi.org/10.25923/qmgr-pr03 .
Turcotte, F., Swain, D. P., McDermid, J. L. & DeLong, R. A. Assessment of the NAFO Division 4TVn Southern Gulf of St. Lawrence Atlantic Herring (Clupea harengus) in 2018–2019 (Canadian Science Advisory Secretariat, 2021).
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008). (PMID: 1827688910.1126/science.1149345)
Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006). (PMID: 1679408110.1126/science.1128035)
Ives, A. R., Dennis, B., Cottingham, K. L. & Carpenter, S. R. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003). (PMID: 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2)
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021). (PMID: 3467275710.1126/science.abj3593)
Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the Equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021). (PMID: 33876750805401610.1073/pnas.2015094118)
McLean, M. et al. Disentangling tropicalization and deborealization in marine ecosystems under climate change. Curr. Biol. 31, 4817–4823 (2021).
Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019). (PMID: 10.1038/s41558-019-0631-5)
Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10, 21081 (2020). (PMID: 33273514771282910.1038/s41598-020-77885-3)
Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019). (PMID: 10.1111/gcb.14704)
Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015). (PMID: 2640010210.1038/ncomms9405)
Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013). (PMID: 10.1111/2041-210X.12029)
Alabia, I. D. et al. Marine biodiversity refugia in a climate-sensitive subarctic shelf. Glob. Change Biol. 27, 3299–3311 (2021). (PMID: 10.1111/gcb.15632)
Catford, J. A., Wilson, J. R. U., Pyšek, P., Hulme, P. E. & Duncan, R. P. Addressing context dependence in ecology. Trends Ecol. Evol. 37, 158–170 (2022). (PMID: 3475676410.1016/j.tree.2021.09.007)
Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015). (PMID: 10.1890/140275)
Thorson, J. T., Scheuerell, M. D., Olden, J. D. & Schindler, D. E. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc. R. Soc. B 285, 20180915 (2018). (PMID: 30282649619169810.1098/rspb.2018.0915)
Chesson, P. L. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994). (PMID: 10.1006/tpbi.1994.1013)
Kjesbu, O. S. et al. Highly mixed impacts of near-future climate change on stock productivity proxies in the north east Atlantic. Fish Fish. 23, 601–615 (2022). (PMID: 10.1111/faf.12635)
Brown, C. J., Mellin, C., Edgar, G. J., Campbell, M. D. & Stuart‐Smith, R. D. Direct and indirect effects of heatwaves on a coral reef fishery. Glob. Change Biol. 27, 1214–1225 (2021). (PMID: 10.1111/gcb.15472)
Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020). (PMID: 3276004610.1038/s41586-020-2534-z)
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018). (PMID: 3011178810.1038/s41586-018-0383-9)
Maureaud, A. A. et al. Are we ready to track climate-driven shifts in marine species across international boundaries? A global survey of scientific bottom trawl data. Glob. Change Biol. 27, 220–236 (2021). (PMID: 10.1111/gcb.15404)
Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019). (PMID: 10.1111/oik.05968)
Husson, B. et al. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. Glob. Change Biol. 28, 3728–3744 (2022). (PMID: 10.1111/gcb.16153)
Leimu, R. & Koricheva, J. Cumulative meta-analysis: a new tool for detection of temporal trends and publication bias in ecology. Proc. R. Soc. Lond B 271, 1961–1966 (2004). (PMID: 10.1098/rspb.2004.2828)
Olsen, A., Larson, S., Padilla-Gamiño, J. & Klinger, T. Changes in fish assemblages after marine heatwave events in West Hawai‘i Island. Mar. Ecol. Prog. Ser. 698, 95–109 (2022). (PMID: 10.3354/meps14156)
Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020). (PMID: 32807945761404110.1038/s41559-020-1256-9)
Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015). (PMID: 10.1016/j.marpol.2015.01.013)
Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019). (PMID: 3101930210.1038/s41586-019-1132-4)
Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).
Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022). (PMID: 3541863310.1038/s41586-022-04553-z)
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/ .
Sherman, K. The large marine ecosystem concept: research and management strategy for living marine resources. Ecol. Appl. 1, 349–360 (1991). (PMID: 2775567310.2307/1941896)
Maureaud, A. A. et al. FishGlob_data: an integrated database of fish biodiversity sampled with scientific bottom-trawl surveys. Preprint at https://doi.org/10.31219/osf.io/2bcjw (2023).
World Register of Marine Species (WoRMS Editorial Board, 2022); https://www.marinespecies.org (2022).
Barnes, R. & Sahr, K. dggridR: Discrete Global Grids. R package version 3.0.0 https://CRAN.R-project.org/package=dggridR (2023).
Ricard, D., Branton, R. M., Clark, D. W. & Hurley, P. Extracting groundfish survey indices from the Ocean Biogeographic Information System (OBIS): an example from Fisheries and Oceans Canada. ICES J. Mar. Sci. 67, 638–645 (2010). (PMID: 10.1093/icesjms/fsp275)
Day, P. B., Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Species’ thermal ranges predict changes in reef fish community structure during 8 years of extreme temperature variation. Divers. Distrib. 24, 1036–1046 (2018). (PMID: 10.1111/ddi.12753)
Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947). (PMID: 10.2307/1948663)
Black, B. A., Schroeder, I. D., Sydeman, W. J., Bograd, S. J. & Lawson, P. W. Wintertime ocean conditions synchronize rockfish growth and seabird reproduction in the central California Current ecosystem. Can. J. Fish. Aquat. Sci. 67, 1149–1158 (2010). (PMID: 10.1139/F10-055)
Tran, L. L. & Johansen, J. L. Seasonal variability in resilience of a coral reef fish to marine heatwaves and hypoxia. Glob. Change Biol. 29, 2522–2535 (2023). (PMID: 10.1111/gcb.16624)
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020). (PMID: 3263188810.1126/science.aaz3658)
Jean-Michel, L. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 9, 698876 (2021).
Amaya, D. J., Alexander, M. A., Scott, J. D. & Jacox, M. G. An evaluation of high-resolution ocean reanalyses in the California Current system. Prog. Oceanogr. 210, 102951 (2023). (PMID: 10.1016/j.pocean.2022.102951)
Amaya, D. J. et al. Bottom marine heatwaves along the continental shelves of North America. Nat. Commun. 14, 1038 (2023). (PMID: 369146431001136410.1038/s41467-023-36567-0)
Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016). (PMID: 10.5194/essd-8-165-2016)
Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007). (PMID: 10.1175/2007JCLI1824.1)
Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019). (PMID: 3133235210.1038/d41586-019-02196-1)
Vogt, L., Burger, F. A., Griffies, S. M. & Frölicher, T. L. Local drivers of marine heatwaves: a global analysis with an Earth system model. Front. Clim. 4, 847995 (2022).
Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021). (PMID: 3491208310.1038/s41586-021-03981-7)
Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008). (PMID: 18713715260582310.1098/rspb.2008.0878)
Baselga, A. et al. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.6 https://CRAN.Rproject.org/package=betapart (2022).
Chaikin, S., Dubiner, S. & Belmaker, J. Cold-water species deepen to escape warm water temperatures. Glob. Ecol. Biogeogr. 31, 75–88 (2022). (PMID: 10.1111/geb.13414)
Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008). (PMID: 10.1111/j.1365-2664.2008.01488.x)
Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577 (2020). (PMID: 3222032710.1016/j.cub.2020.02.043)
English, P. A. et al. Contrasting climate velocity impacts in warm and cool locations show that effects of marine warming are worse in already warmer temperate waters. Fish Fish. 23, 239–255 (2022). (PMID: 10.1111/faf.12613)
Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019). (PMID: 31784548688463710.1038/s41598-019-53998-2)
Flanagan, P. H., Jensen, O. P., Morley, J. W. & Pinsky, M. L. Response of marine communities to local temperature changes. Ecography 42, 214–224 (2019). (PMID: 10.1111/ecog.03961)
Babcock, R. C. et al. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc. Natl Acad. Sci. USA 107, 18256–18261 (2010). (PMID: 20176941297297810.1073/pnas.0908012107)
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007). (PMID: 10.1641/B570707)
Palomares, M. L. D. et al. Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuar. Coast. Shelf Sci. 243, 106896 (2020). (PMID: 10.1016/j.ecss.2020.106896)
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017). (PMID: 10.32614/RJ-2017-066)
Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).
Fagerland, M. W. t-tests, non-parametric tests, and large studies – a paradox of statistical practice? BMC Med. Res. Methodol. 12, 78 (2012). (PMID: 22697476344582010.1186/1471-2288-12-78)
تواريخ الأحداث: Date Created: 20230830 Date Completed: 20230918 Latest Revision: 20230921
رمز التحديث: 20231215
DOI: 10.1038/s41586-023-06449-y
PMID: 37648851
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06449-y