دورية أكاديمية

Alpha-ketoglutaric acid mitigates the detrimental effects of soy antigenic protein on the intestinal health and growth performance of Mirror carp Cyprinus carpio.

التفاصيل البيبلوغرافية
العنوان: Alpha-ketoglutaric acid mitigates the detrimental effects of soy antigenic protein on the intestinal health and growth performance of Mirror carp Cyprinus carpio.
المؤلفون: Zhou Z; College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China.; Guangdong HAID Group Co., Ltd, Guangzhou, 511400, China., Zhao J; College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China., de Cruz CR; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia., Xu H; College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China., Wang L; Animal Nutrition Laboratory, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China., Xu Q; College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China. 02655@zjhu.edu.cn.
المصدر: Fish physiology and biochemistry [Fish Physiol Biochem] 2023 Oct; Vol. 49 (5), pp. 951-965. Date of Electronic Publication: 2023 Sep 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 100955049 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5168 (Electronic) Linking ISSN: 09201742 NLM ISO Abbreviation: Fish Physiol Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht ; Boston : Kluwer Academic Publishers
Original Publication: Amsterdam ; Berkeley : Kugler, 1986-
مواضيع طبية MeSH: Carps*/metabolism, Animals ; Ketoglutaric Acids ; Caspase 3/metabolism ; Caspase 9 ; Intestines ; Tumor Necrosis Factor-alpha/metabolism ; AMP-Activated Protein Kinases ; Diet/veterinary ; Transforming Growth Factor beta ; Animal Feed/analysis ; Dietary Supplements
مستخلص: The study investigated the alleviated effects of Alpha-ketoglutaric acid (AKG) on the intestinal health of mirror carp (Cyprinus carpio Songpu) caused by soy antigenic protein. The diets were formulated from fishmeal (CON), 50% soybean meal (SBM), the mixture of glycinin and β-conglycinin (11 + 7S) and adding 1% AKG in the 11 + 7S (AKG). Carp (~ 4 g) in triplicate (30 fish per tank) was fed to apparent satiation thrice a day for six weeks. Compared with CON, SBM treatment resulted in significantly poor growth performance (P < 0.05), whereas 11 + 7S and AKG treatments were not significantly different from CON (P > 0.05). Gene expression of tumor necrosis factor (TNF-α) and interleukin-1 β (IL-1β) in proximal intestines (PI) and distal intestines (DI) were increased (P < 0.05), and transforming growth factor (TGF-β) in PI and middle intestines (MI) was decreased (P < 0.05) in both SBM and 11 + 7S. The caspase-3 in DI increased in SBM (P < 0.05) and the caspase-3 and caspase-9 in DI increased in 11 + 7S (P < 0.05); conversely, TGF-β in PI and MI was increased, TNF-α and IL-1β in the MI, caspase-3, and caspase-9 in DI was decreased in AKG (P < 0.05). The TOR (target of rapamycin) in PI and MI, ACC in PI, MI and DI was decreased in SBM (P < 0.05), the AMPK in the PI and DI, TOR in PI, MI and DI, ACC in PI and DI, 4E-BP in DI was reduced in 11 + 7S (P < 0.05). AMPK in the PI and DI, ACC in the PI and MI, TOR in PI, MI, and DI, 4E-BP in PI and DI was recovered by AKG supplementation (P < 0.05). Lipids and lipid-like metabolism, organic acids and derivatives metabolism increased in AKG dietary treatment. In conclusion, AKG reduces the expression of intestinal inflammation and apoptosis pathway and changes glycerophospholipid metabolism and sphingolipid metabolism in the intestine of fish.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Abu-Elheiga L, Jayakumar A, Baldini A, Chirala SS, Wakil SJ (1995) Human acetyl-coa carboxylase: characterization, molecular cloning, and evidence for two isoforms. Proc Natl Acad Sci 92(9):4011–4015. https://doi.org/10.1073/pnas.92.9.4011. (PMID: 10.1073/pnas.92.9.4011773202342092)
Ai F, Wang LS, Li JN, Xu QY (2019) Effects of a-ketoglutarate (AKG) supplementation in low phosphorous dietson the growth, phosphorus metabolism and skeletal development of juvenilemirror carp (Cyprinus carpio). Aquaculture 07:393–401. https://doi.org/10.1016/j.aquaculture.03.047. (PMID: 10.1016/j.aquaculture.03.047)
Azar R, Alard A, Susini C, Bousquet C, Pyronnet S (2006) 4e-bp1 is a target of smad4 essential for tgfβ-mediated inhibition of cell proliferation. Urologe 45(10):1266–1270. https://doi.org/10.1038/emboj.2009.291. (PMID: 10.1038/emboj.2009.291)
Barnes BR, Marklund S, Steiler TL, Walter M, Andersson L (2004) The 5′-amp-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279(37):38441–38447. https://doi.org/10.1074/jbc.M405533200. (PMID: 10.1074/jbc.M40553320015247217)
Boutin JA, Meunier F, Lambert PH, Hennig P, Volland JP (1993) In vivo and in vitro glucuronidation of the flavonoid diosmetin in rats. Drug Metab Disp 21(6):1157–1166. https://doi.org/10.1002/ddr.430300311. (PMID: 10.1002/ddr.430300311)
Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10. https://doi.org/10.1016/0167-5699(94)90018-3. (PMID: 10.1016/0167-5699(94)90018-38136014)
Chasiotis H, Kelly SP (2011) Effect of cortisol on permeability and tight junction protein transcript abundance in primary cultured gill epithelia from stenohaline goldfish and euryhaline trout. Gen Comp Endocrinol 172(3):494–504. https://doi.org/10.1016/j.ygcen.2011.04.023. (PMID: 10.1016/j.ygcen.2011.04.02321549120)
Chasiotis H, Kolosov D, Kelly SP (2012) Permeability properties of the teleost gill epithelium under ion-poor conditions. Am J Physiol Regul Integr Comp Physiol 302(6):R727–R739. https://doi.org/10.1152/ajpregu.00577.2011. (PMID: 10.1152/ajpregu.00577.201122204956)
Duan XD, Feng L, Jiang WD, Pei Wu, Yang L, Kuang SY, Tang WN, Zhang YN, Zhou XQ (2019) Dietary soybean β-conglycinin suppresses growth performance and inconsistently triggers apoptosis in the intestine of juvenile grass carp (Ctenopharyngodon idella) in association with ROS-mediated MAPK signalling. Aquac Nutr 25:770–782. https://doi.org/10.1111/anu.12895. (PMID: 10.1111/anu.12895)
Fast MD, Johnson SC, Johns S (2007) Differential expression of the pro-inflammatory cytokines IL-1b-1, TNFa-1 and IL-8 in vaccinated pink (oncorhynchus gorbuscha) and chum (oncorhynchus keta) salmon juveniles. Fish Shellfish Immunol 22(4):403–407. https://doi.org/10.1016/j.fsi.2006.06.012. (PMID: 10.1016/j.fsi.2006.06.01216926099)
Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758. https://doi.org/10.1016/j.cell.2011.11.045. (PMID: 10.1016/j.cell.2011.11.045220788764511103)
Guo SS, Duan R, Wang L, Hou YQ, Tan LL, Cheng Q, Liao M, Ding BY (2017) Dietary a-ketoglutarate supplementation improves hepatic and intestinal energy status and anti-oxidative capacity of Cherry Valley ducks. Anim Sci J 88:1753–1762. https://doi.org/10.1111/asj.12824. (PMID: 10.1111/asj.1282428594103)
Han FL, Wang XD, Guo CL, Xu CQ (2018) Effects of glycinin and β-conglycinin on growth performance and intestinal health in juvenile Chinese mitten crabs (Eriocheir sinensis). Fish Shellfish Immunol 84:269–279. https://doi.org/10.1016/j.fsi.2018.10.013. (PMID: 10.1016/j.fsi.2018.10.01330300740)
Hardie DG, Sakamoto K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21(1):48–60. https://doi.org/10.1152/physiol.00044.2005. (PMID: 10.1152/physiol.00044.200516443822)
Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ (2000) Metabolic stress and altered glucose transport: activation of amp-activated protein kinase as a unifying coupling mechanism. Diabetes 49(4):527–531. https://doi.org/10.2337/diabetes.49.4.527. (PMID: 10.2337/diabetes.49.4.52710871188)
Hossain S, Koshio S, Ishikawa M, Yokoyama S, Sony NM, Islam J (2018) Substitution of dietary fishmeal by soybean meal with inosine administration influences growth, digestibility, immunity, stress resistance and gut morphology of juvenile amberjack seriola dumerili. Aquaculture 488:174–188. https://doi.org/10.1016/j.aquaculture.2018.01.037. (PMID: 10.1016/j.aquaculture.2018.01.037)
Iwashita Y, Suzuki N, Matsunari H, Sugita T, Yamamoto T (2009) Influence of soya saponin, soya lectin, and cholyltaurine supplemented to a casein-based semipurified diet on intestinal morphology and biliary bile status in fingerling rainbow trout oncorhynchus mykiss. Fish Sci 75(5):1307–1315. https://doi.org/10.1007/s12562-009-0158-1. (PMID: 10.1007/s12562-009-0158-1)
Jiang WD, Hu K, Zhang JX, Liu Y, Jiang J, Wu P (2015) Soyabean glycinin depresses intestinal growth and function in juvenile jian carp (cyprinus carpio var jian): protective effects of glutamine. Br J Nutr 114:1569–1583. https://doi.org/10.1017/S0007114515003219. (PMID: 10.1017/S000711451500321926349522)
Kortner TM, Skugor S, Penn MH, Mydland LT, Djordjevic B, Hillestad M, Krasnov A, Krogdhl A (2012) Dietary soyasaponin supplementation to pea protein concentrate reveals nutrigenomic interactions underlying enteropathy in Atlantic salmon (Salmo salar). BioMed Central 8:101. https://doi.org/10.1186/1746-6148-8-101. (PMID: 10.1186/1746-6148-8-101)
Krause G, Winkler L, Piehl C, Blasig I, Piontek J, Piontek J, Mueller SL (2010) Structure and Function of Extracellular Claudin Domains. Ann N Y Acad Sci 1165:34–43. https://doi.org/10.1111/j.1749-6632.2009.04057.x. (PMID: 10.1111/j.1749-6632.2009.04057.x)
Krogdahl A, Bakke‐McKellep A M, Baeverfjord G (2015) Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (salmo salar L.). Aquac Nutr 9(6):361–371. https://doi.org/10.1046/j.1365-2095.2003.00264.x.
Li Y, Hu H, Liu J, Yang P, Zhang Y, Ai Q (2017a) Dietary soya allergen β-conglycinin induces intestinal inflammatory reactions, serum-specific antibody response and growth reduction in a carnivorous fish species, turbot scophthalmus maximus l. Aquac Res. https://doi.org/10.1111/are.13224. (PMID: 10.1111/are.13224)
Li Y, Yang P, Zhang Y, Ai Q, Xu W, Zhang W (2017b) Effects of dietary glycinin on the growth performance, digestion, intestinal morphology and bacterial community of juvenile turbot, scophthalmus maximus l. Aquaculture 479:125–133. https://doi.org/10.1016/j.aquaculture.2017.05.008. (PMID: 10.1016/j.aquaculture.2017.05.008)
Lin SM, Li L (2011) Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia, Oreochromis niloticus × O. aureus. Animal Feed Comparison Science and Technology 168:80–87. https://doi.org/10.1016/j.anifeedsci.2011.03.012. (PMID: 10.1016/j.anifeedsci.2011.03.012)
Luo QH, Zhou ZL, Zhao JH, Xu H, Limbu SM, Xu QY (2023) Dietary β-conglycinin induces intestinal enteritis and affects glycerophospholipid and arginine metabolism in mirror carp (Cyprinus carpio). Aquaculture 567:739257. https://doi.org/10.1016/j.aquaculture.2023.739257. (PMID: 10.1016/j.aquaculture.2023.739257)
Luo QH, Qian RD, Qiu ZS, Yamamoto FY, Du YY, Lin XW, Zhao JH, Xu QY (2023b) Dietary a-ketoglutarate alleviates glycinin and b-conglycinin induced damage in the intestine of mirror carp (Cyprinus carpio). Front Immunol 14:1140012. https://doi.org/10.3389/fimmu.2023.1140012. (PMID: 10.3389/fimmu.2023.11400123718775010179059)
Lygren B, Hamre K, Waagb R (2001) Effect of induced hyperoxia on the antioxidant status of atlantic salmon salmo salar l. fed three different levels of dietary vitamin E. Aquac Res 31:401–407. https://doi.org/10.1046/j.1365-2109.2000.00459.x. (PMID: 10.1046/j.1365-2109.2000.00459.x)
Mazdak BL, Wright SI, Kelly SP (2008) Claudin-3 tight junction proteins in Tetraodon nigroviridis: cloning, tissue-specific expression, and a role in hydromineral balance. Am J Physiol Regul Integr Comp Physiol 294(5):R1638-47. https://doi.org/10.1152/ajpregu.00039.2008. (PMID: 10.1152/ajpregu.00039.2008)
NRC (2011) Nutrient Requirements of Fish and Shrimp. National Academy Press, Washington, DC.
Sahlmann C, Sutherland B, Kortner TM, Koop BF, Krogdahl A, Bakke AM (2013) Early response of gene expression in the distal intestine of atlantic salmon (salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol 34:599–609. https://doi.org/10.1016/j.fsi.2012.11.031. (PMID: 10.1016/j.fsi.2012.11.03123246810)
Santigosa E, Miguel R, Rodiles A, Barroso FG, Alarcón FJ (2010) Effect of diets containing a purified soybean trypsin inhibitor on growth performance, digestive proteases and intestinal histology in juvenile sea bream (sparus aurata L.). Aquac Res 41:e187–e198. https://doi.org/10.1111/j.1365-2109.2010.02500.x. (PMID: 10.1111/j.1365-2109.2010.02500.x)
Sharifi AM, Eslami H, Larijani B, Davood J (2009) Involvement of caspase-8, -9, and -3 in high glucose-induced apoptosis in PC12 cells. Neurosci Lett 459(2):47–51. https://doi.org/10.1016/j.neulet.2009.03.100. (PMID: 10.1016/j.neulet.2009.03.10019467786)
Sperstad S, Bakke-Mckellep AM, Penn MH, Salas PM, Krogdahl Å (2007) Effects of dietary soybean meal, inulin and oxytetracycline on gastrointestinal histological characteristics, distal intestine cell proliferation and intestinal microbiota in Atlantic salmon (Salmo salar L.). Br J Nutr 97(4):699–713. https://doi.org/10.1017/S0007114507381397. (PMID: 10.1017/S000711450738139717349083)
Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O, Whitworth AJ (2009) Rapamycin activation of 4e-bp prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12:1129–1135. https://doi.org/10.1038/nn.2372. (PMID: 10.1038/nn.2372196845922745154)
Urán PA, Gonalves AA, Taverne-Thiele JJ, Schrama JW, Rombout J (2009) Soybean meal induces intestinal inflammation in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 25:751–760. https://doi.org/10.1016/j.fsi.2008.02.013. (PMID: 10.1016/j.fsi.2008.02.013)
Wang X, Sun H, Zhang A, Ping W, Han Y (2011) Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies. J Sep Sci 34(24):3451–3459. https://doi.org/10.1002/jssc.201100333. (PMID: 10.1002/jssc.20110033321826791)
Wei Y, Liang M, Mai K, Zheng K, Xu H (2017) 1H NMR-based metabolomics studies on the effect of size-fractionated fish protein hydrolysate, fish meal and plant protein in diet for juvenile turbot (Scophthalmus maximus L). Aquac Nutr 23(3):523–536. https://doi.org/10.1111/anu.12420. (PMID: 10.1111/anu.12420)
Wilson S, Blaschek K, Mejia EG (2005) Allergenic Proteins in Soybean: Processing and Reduction of P34 Allergenicity. Nutr Rev 63(2):47–58. https://doi.org/10.1111/j.1753-4887.2005.tb00121.x. (PMID: 10.1111/j.1753-4887.2005.tb00121.x15762088)
Wu D, Fan Z, Li J, Zhang Y, Xu Q, Wang L, Wang L (2022) Low Protein Diets Supplemented With Alpha-Ketoglutarate Enhance the Growth Performance, Immune Response, and Intestinal Health in Common Carp (Cyprinus carpio). Front Immunol 13:915657. https://doi.org/10.3389/fimmu.2022.915657. (PMID: 10.3389/fimmu.2022.915657357202849200961)
Yadav G, Meena DK, Sahoo AK, Das BK, Sen R (2020) Effective valorization of microalgal biomass for the production of nutritional fish-feed supplements. J Clean Prod 243:118697. https://doi.org/10.1016/j.jclepro.2019.118697. (PMID: 10.1016/j.jclepro.2019.118697)
Zhang JX, Guo LY, Lin F, Jiang WD, Kuang SY, Liu Y (2014) Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. Plos One 8(3):e58115. https://doi.org/10.1371/journal.pone.0058115. (PMID: 10.1371/journal.pone.0058115)
Zhang C, Rahimnejad S, Wang YR, Lu K, Kai S, Ling W (2018) Substituting fish meal with soybean meal in diets for japanese seabass (Lateolabrax japonicus): effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture 483:173–182. https://doi.org/10.1016/j.aquaculture.2017.10.029. (PMID: 10.1016/j.aquaculture.2017.10.029)
Zhao JY, Xu QY (2022) Influence of soybean meal on intestinal mucosa metabolome and effects of adenosine monophosphate-activated protein kinase signaling pathway in mirror carp (Cyprinus carpio Songpu). Front Mar Sci 9:844716. https://doi.org/10.3389/fmars.2022.844716. (PMID: 10.3389/fmars.2022.844716)
Zhao Y, Qin G, Han R, Wang J, Zhang X, Liu D (2014) β-conglycinin reduces the tight junction occludin and zo-1 expression in ipec-j2. Int J Mol Sci 15:1915–1926. https://doi.org/10.3390/ijms15021915. (PMID: 10.3390/ijms15021915244731413958829)
Zhao Y, Liu D, Zhang S, Pan L, Qin G (2017) Different Damage to the Mechanical Barrier Function of IPEC-J2 Induced by Soybean Allergen β-conglycinin Hydrolyzed Peptides. Int J Food Eng 13(10):2–7. https://doi.org/10.1515/ijfe-2016-0370. (PMID: 10.1515/ijfe-2016-0370)
Zhao JH, Yang X, Qiu ZS, Zhang RF, Xu H, Wang T (2023) Effects of tributyrin and alanyl-glutamine dipeptide on intestinal health of largemouth bass (Micropterus salmoides) fed with high soybean meal diet. Front Immunol 14:1140678. https://doi.org/10.3389/fimmu.2023.1140678. (PMID: 10.3389/fimmu.2023.11406783726642310230952)
فهرسة مساهمة: Keywords: AKG; Carp; Intestine; Metabolome; Soy antigen protein
المشرفين على المادة: 0 (Ketoglutaric Acids)
EC 3.4.22.- (Caspase 3)
EC 3.4.22.- (Caspase 9)
0 (Tumor Necrosis Factor-alpha)
EC 2.7.11.31 (AMP-Activated Protein Kinases)
0 (Transforming Growth Factor beta)
تواريخ الأحداث: Date Created: 20230904 Date Completed: 20231023 Latest Revision: 20231023
رمز التحديث: 20231023
DOI: 10.1007/s10695-023-01234-0
PMID: 37665506
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-5168
DOI:10.1007/s10695-023-01234-0