دورية أكاديمية

Zwitterionic "Solutions" for Reversible CO 2 Capture.

التفاصيل البيبلوغرافية
العنوان: Zwitterionic "Solutions" for Reversible CO 2 Capture.
المؤلفون: Aydos GLP; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Marin G; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Ebeling G; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Dos Santos FP; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Leal BC; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Zink RD; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Vargas BA; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Migowski P; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Stieler R; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., de Araújo BB; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Gonçalves P; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Stassen HK; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil., Dos Santos Pereira L; Petrobras/CENPES, Cidade Universitária, Ilha do Fundão, Avenida Horácio Macedo 950, Rio de Janeiro, RJ, CEP, 21941-915, Brazil., Musse AP; Petrobras/CENPES, Cidade Universitária, Ilha do Fundão, Avenida Horácio Macedo 950, Rio de Janeiro, RJ, CEP, 21941-915, Brazil., Dupont J; Institute of Chemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 RS, Brazil.
المصدر: ChemSusChem [ChemSusChem] 2023 Dec 07; Vol. 16 (23), pp. e202300971. Date of Electronic Publication: 2023 Sep 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101319536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1864-564X (Electronic) Linking ISSN: 18645631 NLM ISO Abbreviation: ChemSusChem Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Weinheim : Wiley-VCH
مستخلص: The zwitterions resulting from the covalent attachment of 3- or 4-hydroxy benzene to the 1,3-dimethylimidazolium cation represent basic compounds (pKa of 8.68 and 8.99 in aqueous solutions, respectively) that chemisorb in aqueous solutions 0.58 mol/mol of carbon dioxide at 1.3 bar (absolute) and 40 °C. Equimolar amounts of chemisorbed CO 2 in these solutions are obtained at 10 bar and 40 °C. Chemisorption takes place through the formation of bicarbonate in the aqueous solution using imidazolium-containing phenolate. CO 2 is liberated by simple pressure relief and heating, regenerating the base. The enthalpy of absorption was estimated to be -38 kJ/mol, which is about 30 % lower than the enthalpy of industrially employed aqueous solutions of MDEA (estimated at -53 kJ/mol using the same experimental apparatus). The physisorption of CO 2 becomes relevant at higher pressures (>10 bar) in these aqueous solutions. Combined physio- and chemisorption of up to 1.3 mol/mol at 40 bar and 40 °C can be attained with these aqueous zwitterionic solutions that are thermally stable and can be recycled at least 20 times.
(© 2023 Wiley-VCH GmbH.)
References: .
J. E. Bara, D. E. Camper, D. L. Gin, R. D. Noble, Acc. Chem. Res. 2010, 43, 152-159;.
P. Madejski, K. Chmiel, N. Subramanian, T. Kuś, Energies 2022, 15, 887-908;.
Z. Cheng, S. Li, Y. Liu, Y. Zhang, Z. Ling, M. Yang, L. Jiang, Y. Song, Renewable Sustainable Energy Rev. 2022, 154, AN111806;.
B. Smit, A.-H. A. Park, G. Gadikota, Front. Energy Res. 2014, 2, DOI: 10.3389/fenrg.2014.00055;.
B. P. Spigarelli, S. K. Kawatra, J. CO2 Util. 2013, 1, 69-87.
 .
P. Panja, B. McPherson, M. Deo, Carbon Capture Sci. Technol. 2022, 3, AN100041;.
F. Hussin, M. K. Aroua, J. Cleaner Prod. 2020, 253, e119707;.
F. O. Ochedi, J. Yu, H. Yu, Y. Liu, A. Hussain, Environ. Chem. Lett. 2020, 19, 77-109;.
J. Dupont, N. M. Simon, M. Zanatta, F. P. Dos Santos, M. C. Corvo, E. J. Cabrita, ChemSusChem 2017, 10, 4927-4933;.
C. E. Wilmer, O. K. Farha, Y.-S. Bae, J. T. Hupp, R. Q. Snurr, Energy Environ. Sci. 2012, 5, 9849-9856.
 .
J. K. Stolaroff, D. W. Keith, G. V. Lowry, Environ. Sci. Technol. 2008, 42, 2728-2735;.
Y. E. Kim, J. A. Lim, S. K. Jeong, Y. I. Yoon, S. T. Bae, S. C. Nam, Bull. Korean Chem. Soc. 2013, 34, 783-787.
R. Shao, A. Stangeland, The Bellona Foundation 2009, 1-49.
 .
M. T. Mota-Martinez, P. Brandl, J. P. Hallett, N. Mac Dowell, Mol. Syst. Des. Eng. 2018, 3, 560-571;.
X. P. Zhang, X. C. Zhang, H. F. Dong, Z. J. Zhao, S. J. Zhang, Y. Huang, Energy Environ. Sci. 2012, 5, 6668-6681;.
J. F. Brennecke, B. E. Gurkan, J. Phys. Chem. Lett. 2010, 1, 3459-3464;.
G. Cui, J. Wang, S. Zhang, Chem. Soc. Rev. 2016, 45, 4307-4339.
 .
S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Chem. Rev. 2017, 117, 9625-9673;.
S. K. Shukla, S. G. Khokarale, T. Q. Bui, J.-P. T. Mikkola, Front. Mater. 2019, 6, DOI: 10.3389/fmats.2019.00042.
 .
M. J. Earle, J. M. Esperanca, M. A. Gilea, J. N. Lopes, L. P. Rebelo, J. W. Magee, K. R. Seddon, J. A. Widegren, Nature 2006, 439, 831-834;.
M. A. Rocha, C. F. Lima, L. R. Gomes, B. Schroder, J. A. Coutinho, I. M. Marrucho, J. M. Esperanca, L. P. Rebelo, K. Shimizu, J. N. Lopes, L. M. Santos, J. Phys. Chem. B 2011, 115, 10919-10926.
L. I. Helgesen, E. Gjernes, Energy Procedia 2016, 86, 239-251.
P. J. Carvalho, K. A. Kurnia, J. A. Coutinho, Phys. Chem. Chem. Phys. 2016, 18, 14757-14771.
E. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis Jr., J. Am. Chem. Soc. 2002, 124, 926-927.
 .
M. Zanatta, N. M. Simon, F. P. Dos Santos, M. C. Corvo, E. J. Cabrita, J. Dupont, Angew. Chem. Int. Ed. Engl. 2019, 58, 382-385;.
J. Dupont, N. Simon, M. Zanatta, ChemSusChem 2020, 13, 1817;.
T. B. Lee, S. Oh, T. R. Gohndrone, O. Morales-Collazo, S. Seo, J. F. Brennecke, W. F. Schneider, J. Phys. Chem. B 2016, 120, 1509-1517;.
M. Besnard, M. I. Cabaco, F. V. Chavez, N. Pinaud, P. J. Sebastiao, J. A. Coutinho, Y. Danten, Chem. Commun. 2012, 48, 1245-1247;.
G. Gurau, H. Rodriguez, S. P. Kelley, P. Janiczek, R. S. Kalb, R. D. Rogers, Angew. Chem. Int. Ed. Engl. 2011, 50, 12024-12026;.
C. Wang, X. Luo, H. Luo, D.-e. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 2011, 50, 4918-4922;.
D.-J. Tao, F.-F. Chen, Z.-Q. Tian, K. Huang, S. M. Mahurin, D.-e. Jiang, S. Dai, Angew. Chem. Int. Ed. 2017, 56, 6843-6847;.
Y. Huang, G. Cui, Y. Zhao, H. Wang, Z. Li, S. Dai, J. Wang, Angew. Chem. Int. Ed. Engl. 2017, 56, 13293-13297;.
F. F. Chen, K. Huang, Y. Zhou, Z. Q. Tian, X. Zhu, D. J. Tao, D. E. Jiang, S. Dai, Angew. Chem. Int. Ed. Engl. 2016, 55, 7166-7170;.
X. Luo, Y. Guo, F. Ding, H. Zhao, G. Cui, H. Li, C. Wang, Angew. Chem. Int. Ed. Engl. 2014, 53, 7053-7057;.
T. Oncsik, R. Vijayaraghavan, D. R. MacFarlane, Chem. Commun. 2018, 54, 2106-2109;.
D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, J. Palomar, Chem. Eng. J. Adv. 2022, 10, 100291.
J. F. do Nascimento, J. Dupont, S. M. C. de Menezes, F. P. dos Santos, G. Marin, G. L. Aydos, G. Ebeling, (Ed.: PCT/BR2021/050557), UFRGS and PETROBRAS, Brazil, 2021.
P. Pakzad, M. Mofarahi, M. Ansarpour, M. Afkhamipour, C.-H. Lee, in Advances in Carbon Capture (Eds.: M. R. Rahimpour, M. Farsi, M. A. Makarem), Woodhead Publishing, 2020, pp. 51-87.
 .
M. Narimani, S. Amjad-Iranagh, H. Modarress, J. Nat. Gas Sci. Eng. 2017, 47, 154-166;.
W.-C. Yu, G. Astarita, D. W. Savage, Chem. Eng. Sci. 1985, 40, 1585-1590.
 .
K. G. Joback, J. R. Heberle, A. S. Bhown, Energy Procedia 2017, 114, 1689-1708;.
E. F. da Silva, H. F. Svendsen, Int. J. Greenhouse Gas Control 2007, 1, 151-157.
 .
D. Pines, J. Ditkovich, T. Mukra, Y. Miller, P. M. Kiefer, S. Daschakraborty, J. T. Hynes, E. Pines, J. Phys. Chem. B 2016, 120, 2440-2451;.
T. Loerting, J. Bernard, ChemPhysChem 2010, 11, 2305-2309.
J. E. Wheatley, S. Bala, D. C. Barnes, C. Schoolderman, G. Jakab, G. Raynel, C. M. Rayner, Int. J. Greenhouse Gas Control 2019, 88, 353-360.
J. Catalá, M. P. Caballero, F. de la Cruz-Martínez, J. Tejeda, J. A. Castro-Osma, A. Lara-Sánchez, J. M. García-Vargas, M. T. García, M. J. Ramos, I. Gracia, J. F. Rodríguez, J. CO2 Util. 2022, 61, 102060.
G. M. Battle, G. M. Ferrence, F. H. Allen, J. Appl. Crystallogr. 2010, 43, 1208-1223.
C. R. Martinez, B. L. Iverson, Chem. Sci. 2012, 3, 2191-2201.
 .
N. M. Simon, M. Zanatta, J. Neumann, A. L. Girard, G. Marin, H. Stassen, J. Dupont, ChemPhysChem 2018, 19, 2879-2884;.
H. K. Stassen, R. Ludwig, A. Wulf, J. Dupont, Chem. Eur. J. 2015, 21, 8324-8335.
J. C. Dearden, W. F. Forbes, Can. J. Chem. 1959, 37, 1294-1304.
 .
C. Wang, H. Luo, D. E. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. Engl. 2010, 49, 5978-5981;.
C. Wang, X. Luo, H. Luo, D. E. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. Engl. 2011, 50, 4918-4922.
T. L. Donaldson, Y. N. Nguyen, Ind. Eng. Chem. Fundam. 1980, 19, 260-266.
G. F. Versteeg, W. P. M. van Swaaij, Chem. Eng. Sci. 1988, 43, 587-591.
M. Zanatta, A. L. Girard, G. Marin, G. Ebeling, F. P. Dos Santos, C. Valsecchi, H. Stassen, P. R. Livotto, W. Lewis, J. Dupont, Phys. Chem. Chem. Phys. 2016, 18, 18297-18304.
J. B. Ott, J. Boerio-Goates, in Chemical Thermodynamics: Principles and Applications (Eds.: J. B. Ott, J. Boerio-Goates), Academic Press, London, 2000, pp. 105-153.
A. E. Sherwood, J. M. Prausnitz, AlChE J. 1962, 8, 519-521.
J. Gabrielsen, M. L. Michelsen, E. H. Stenby, G. M. Kontogeorgis, Ind. Eng. Chem. Res. 2005, 44, 3348-3354.
J. K. Carson, K. N. Marsh, A. E. Mather, J. Chem. Thermodyn. 2000, 32, 1285-1296.
O. V. Dorofeeva, O. N. Ryzhova, J. Phys. Chem. A 2016, 120, 2471-2479.
J. Lalevee, X. Allonas, J. P. Fouassier, J. Am. Chem. Soc. 2002, 124, 9613-9621.
M. A. Varfolomeev, A. A. Khachatrian, B. S. Akhmadeev, B. N. Solomonov, A. V. Yermalayeu, S. P. Verevkin, J. Solution Chem. 2015, 44, 811-823.
C. V. Krishnan, H. L. Friedman, J. Phys. Chem. 2002, 73, 3934-3940.
Z. Zhang, A. L. Kummeth, J. Y. Yang, A. N. Alexandrova, Proc. Natl. Acad. Sci. USA 2022, 119, e2123496119.
 .
R. Sander, W. E. Acree, A. De Visscher, S. E. Schwartz, T. J. Wallington, Pure Appl. Chem. 2022, 94, 71-85;.
R. Sander, Atmos. Chem. Phys. 2015, 15, 4399-4981.
 .
G. W. Xu, C. F. Zhang, S. J. Qin, W. H. Gao, H. B. Liu, Ind. Eng. Chem. Res. 1998, 37, 1473-1477;.
L. Li, M. Maeder, R. Burns, G. Puxty, S. Clifford, H. Yu, Energy Procedia 2017, 114, 1841-1847;.
E. Skylogianni, C. Perinu, B. Y. C. Gameros, H. K. Knuutila, J. Chem. Thermodyn. 2020, 151, AN106176.
S. F. R. Taylor, C. McCrellis, C. McStay, J. Jacquemin, C. Hardacre, M. Mercy, R. G. Bell, N. H. de Leeuw, J. Solution Chem. 2015, 44, 511-527.
G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
A. C. Lee, G. M. Crippen, J. Chem. Inf. Model. 2009, 49, 2013-2033.
C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Crystallogr. 2020, 53, 226-235.
R. G. Bates, G. D. Pinching, J. Res. Natl. Bur. Stand. 1951, 46, 349-352.
 .
A. Hartono, M. Saeed, I. Kim, H. F. Svendsen, Energy Procedia 2014, 63, 1122-1128;.
S. Evjen, I. R. Krokvik, A. Fiksahl, H. Knuutila, Energy Procedia 2017, 114, 2590-2598.
 .
J.-J. Ko, M.-H. Li, Chem. Eng. Sci. 2000, 55, 4139-4147;.
C. Mathonat, V. Majer, A. E. Mather, J. P. E. Grolier, Fluid Phase Equilib. 1997, 140, 171-182.
معلومات مُعتمدة: 001 CAPES; 22/2551-0000386-9 FAPERGS; 406260/2018-4 CNPq; SAP4600579154 PETROBRAS
فهرسة مساهمة: Keywords: bicarbonate; carbon dioxide capture; ionic liquids; organic base; zwitterion
تواريخ الأحداث: Date Created: 20230908 Latest Revision: 20231208
رمز التحديث: 20231215
DOI: 10.1002/cssc.202300971
PMID: 37681317
قاعدة البيانات: MEDLINE
الوصف
تدمد:1864-564X
DOI:10.1002/cssc.202300971