دورية أكاديمية

Shear wave elastography of tibial nerve in patients with diabetic peripheral neuropathy-A cross-sectional study.

التفاصيل البيبلوغرافية
العنوان: Shear wave elastography of tibial nerve in patients with diabetic peripheral neuropathy-A cross-sectional study.
المؤلفون: Pradhan DR; Department of Diagnostic and Interventional Radiology, AIIMS Rishikesh, Rishikesh, India., Saxena S; Department of Diagnostic and Interventional Radiology, AIIMS Rishikesh, Rishikesh, India., Kant R; Department of Internal Medicine, AIIMS Rishikesh, Rishikesh, India., Kumar M; Department of Neurology, AIIMS Rishikesh, Rishikesh, India., Saran S; Department of Diagnostic and Interventional Radiology, AIIMS Rishikesh, Rishikesh, India. sonal.rd@aiimsrishikesh.edu.in.
المصدر: Skeletal radiology [Skeletal Radiol] 2024 Mar; Vol. 53 (3), pp. 547-554. Date of Electronic Publication: 2023 Sep 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7701953 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2161 (Electronic) Linking ISSN: 03642348 NLM ISO Abbreviation: Skeletal Radiol Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer Verlag
Original Publication: Berlin, New York, Springer International.
مواضيع طبية MeSH: Diabetes Mellitus, Type 2*/complications , Diabetes Mellitus, Type 2*/diagnostic imaging , Elasticity Imaging Techniques*/methods , Diabetic Neuropathies*/diagnostic imaging , Tibial Neuropathy*/complications, Humans ; Cross-Sectional Studies ; Glycated Hemoglobin ; Tibial Nerve/diagnostic imaging
مستخلص: Objective: To explore the role of shear wave elastography of the tibial nerve as a potential ultrasonographic method for the diagnosis of tibial neuropathy in patients with type 2 diabetes.
Materials and Methods: This cross-sectional study included 50 subjects each in case (patients with diabetic tibial neuropathy diagnosed on the basis of clinical features and nerve conduction study) and control groups (non-diabetic non-neuropathic healthy volunteers). The exclusion criteria included the presence of type 1 diabetes, a known history of neuropathy from other causes except for type 2 diabetes, or a history of leg or ankle fracture. Cross-sectional area and shear wave velocity values of the tibial nerve were measured in both groups. Demographic details and body mass index were obtained in both groups and additionally, the duration of type 2 diabetes and HbA1c values in the case group were also noted. Wilcoxon Mann-Whitney U test was used to compare these variables in study groups. ROC curve analysis provided additional findings.
Results: Tibial nerve stiffness was significantly higher in the case group (p-value < 0.001). The study groups did not significantly differ in the Cross-sectional area of the tibial nerve (p-value 0.57). The case group exhibited a higher frequency of loss of the fascicular pattern of the tibial nerve (40% vs 18%, p-value 0.027). Duration of diabetes mellitus and HbA1c values did not significantly affect Shear wave velocity values in the case group. At the cut-off value of Shear wave velocity of 3.13 m/s, sensitivity and specificity to diagnose diabetic peripheral neuropathy were 94% and 88% respectively.
Conclusion: Increased nerve stiffness is seen in patients with diabetic peripheral neuropathy. Shear wave elastography might prove as a novel noninvasive technology for screening/early diagnosis of diabetic peripheral neuropathy.
(© 2023. The Author(s), under exclusive licence to International Skeletal Society (ISS).)
References: Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;1(183):109119. (PMID: 10.1016/j.diabres.2021.109119)
Ogurtsova K, Guariguata L, Barengo NC, et al. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract. 2022;1(183):109118. (PMID: 10.1016/j.diabres.2021.109118)
Kaneto H. Pathophysiology of type 2 diabetes mellitus. Nihon rinsho. Jpn J Clin Med. 2015;73(12):2003–7.
Yen FS, Wei JC, Shih YH, Hsu CC, Hwu CM. Impact of individual microvascular disease on the risks of macrovascular complications in type 2 diabetes: a nationwide population-based cohort study. Cardiovasc Diabetol. 2023;22(1):1–9. (PMID: 10.1186/s12933-023-01821-8)
Bandyk DF. The diabetic foot: Pathophysiology, evaluation, and treatment. Semin Vasc Surg. 2018;31(2–4):43–8. (PMID: 10.1053/j.semvascsurg.2019.02.00130876640)
Vibha SP, Kulkarni MM, Kirthinath Ballala AB, Kamath A, Maiya GA. Community based study to assess the prevalence of diabetic foot syndrome and associated risk factors among people with diabetes mellitus. BMC Endocr Disord. 2018;18(1):1–9. (PMID: 10.1186/s12902-018-0270-2)
Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11(6):521–34. (PMID: 10.1016/S1474-4422(12)70065-0226086664254767)
Won JC, Kim SS, Ko KS, Cha BY. Current status of diabetic peripheral neuropathy in Korea: report of a hospital-based study of type 2 diabetic patients in Korea by the diabetic neuropathy study group of the Korean diabetes association. Diabetes Metab J. 2014;38(1):25–31. (PMID: 10.4093/dmj.2014.38.1.25246278243950191)
Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44:1973–88. (PMID: 10.1007/s00125010000111719828)
Malik RA, Tesfaye S, Thompson SD, et al. Endoneurial localisation of microvascular damage in human diabetic neuropathy. Diabetologia. 1993;36:454–9. (PMID: 10.1007/BF004022838314451)
Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352(4):341–50. (PMID: 10.1056/NEJMoa03278215673800)
Kim RP, Edelman SV, Kim DD. Musculoskeletal complications of diabetes mellitus. Clin Diabetes. 2001;19(3):132–5. (PMID: 10.2337/diaclin.19.3.132)
Dikici AS, Ustabasioglu FE, Delil S, et al. Evaluation of the tibial nerve with shear-wave elastography: a potential sonographic method for the diagnosis of diabetic peripheral neuropathy. Radiology. 2017;282(2):494–501. (PMID: 10.1148/radiol.201616013527643671)
Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J. Harrison’s principles of internal medicine, 21e. New York, NY, USA: Mcgraw-hill; 2022.
Dyck PJ, Overland CJ, Low PA, et al. NPhys Trial Investigators (see Appendix for additional authors).Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve. 2010;42(2):157–64. (PMID: 10.1002/mus.2166120658599)
Watanabe T, Ito H, Sekine A, et al. Sonographic evaluation of the peripheral nerve in diabetic patients: the relationship between nerve conduction studies, echo intensity, and cross-sectional area. J Ultrasound Med. 2010;29(5):697–708. (PMID: 10.7863/jum.2010.29.5.69720427781)
Wei M, Ye X. Feasibility of point shear wave elastography for evaluating diabetic peripheral neuropathy. J Ultrasound Med. 2020;39(6):1135–41. (PMID: 10.1002/jum.1519831872909)
Taljanovic MS, Gimber LH, Becker GW, et al. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3):855–70. (PMID: 10.1148/rg.201716011628493799)
He Y, Xiang X, Zhu BH, Qiu L. Shear wave elastography evaluation of the median and tibial nerve in diabetic peripheral neuropathy. Quant Imaging Med Surg. 2019;9(2):273. (PMID: 10.21037/qims.2019.02.05309765516414758)
Chen R, Wang XL, Xue WL, et al. Application value of conventional ultrasound and real-time shear wave elastography in patients with type 2 diabetic polyneuropathy. Eur J Radiol. 2020;1(126):108965. (PMID: 10.1016/j.ejrad.2020.108965)
O’Shea A, Pierce TT. US elastography in hepatic fibrosis-radiology in training. Radiology. 2021;299(2):264–71.
Bedewi MA, Elsifey AA, Alfaifi T, et al. Shear wave elastography of the tibial nerve in healthy subjects. Medicine. 2021;100(3):e23999. (PMID: 10.1097/MD.0000000000023999335459927837829)
Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260–74. (PMID: 10.1177/01617346980200040310197347)
Wells PN, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface. 2011;8(64):1521–49. (PMID: 10.1098/rsif.2011.0054216807803177611)
Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34. (PMID: 10.1177/0161734691013002011858217)
Shiina T, Nightingale KR, Palmeri ML, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41(5):1126–47. (PMID: 10.1016/j.ultrasmedbio.2015.03.00925805059)
فهرسة مساهمة: Keywords: Acoustic radiation force impulse imaging; Diabetic foot; Diabetic neuropathy; Elastography; Tibial neuropathy
المشرفين على المادة: 0 (Glycated Hemoglobin)
تواريخ الأحداث: Date Created: 20230912 Date Completed: 20240110 Latest Revision: 20240110
رمز التحديث: 20240110
DOI: 10.1007/s00256-023-04448-8
PMID: 37698625
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2161
DOI:10.1007/s00256-023-04448-8