دورية أكاديمية

Peroxisome proliferator-activated receptors as therapeutic target for cancer.

التفاصيل البيبلوغرافية
العنوان: Peroxisome proliferator-activated receptors as therapeutic target for cancer.
المؤلفون: Wang Y; Department of Internal Medicine, Montefiore Medical Center, Wakefield Campus, Bronx, New York, USA., Lei F; Department of Infectious Disease, Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China., Lin Y; Department of Biomedical Sciences, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA., Han Y; Qinghai Provincial People's Hospital, Xining, China., Yang L; Department of Biomedical Sciences, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA., Tan H; Department of Infectious Disease, Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
المصدر: Journal of cellular and molecular medicine [J Cell Mol Med] 2024 Mar; Vol. 28 (5), pp. e17931. Date of Electronic Publication: 2023 Sep 12.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101083777 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1582-4934 (Electronic) Linking ISSN: 15821838 NLM ISO Abbreviation: J Cell Mol Med Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley-Blackwell
Original Publication: Bucharest : "Carol Davila" University Press, 2000-
مواضيع طبية MeSH: Neoplasms*/metabolism , Neoplasms*/pathology , Neoplasms*/genetics , Neoplasms*/drug therapy , Neoplasms*/therapy , Peroxisome Proliferator-Activated Receptors*/metabolism , Peroxisome Proliferator-Activated Receptors*/agonists , Tumor Microenvironment*, Humans ; Animals ; Molecular Targeted Therapy ; Signal Transduction ; Gene Expression Regulation, Neoplastic ; Antineoplastic Agents/therapeutic use ; Antineoplastic Agents/pharmacology
مستخلص: Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
(© 2023 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.)
References: Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry. 1993;32:5598‐5604. doi:10.1021/bi00072a015.
Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645‐650. doi:10.1038/347645a0.
Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: from past to present. Eur J Med Chem. 2017;126:879‐893. doi:10.1016/j.ejmech.2016.12.020.
Miyachi H. Structural biology‐based exploration of subtype‐selective agonists for peroxisome proliferator‐activated receptors. Int J Mol Sci. 2021;22(17):9223. doi:10.3390/ijms22179223.
Cheng HS, Yip YS, Lim EKY, Wahli W, Tan NS. PPARs and tumor microenvironment: the emerging roles of the metabolic master regulators in tumor stromal‐epithelial crosstalk and carcinogenesis. Cancers (Basel). 2021;13(9):2153. doi:10.3390/cancers13092153.
Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W. Control of the peroxisomal beta‐oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992;68:879‐887. doi:10.1016/0092-8674(92)90031-7.
Wagner KD, Wagner N. Peroxisome proliferator‐activated receptor beta/delta (PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther. 2010;125:423‐435. doi:10.1016/j.pharmthera.2009.12.001.
Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator‐activated receptor‐retinoid X receptor heterodimers. Proc Natl Acad Sci U S A. 1993;90:2160‐2164. doi:10.1073/pnas.90.6.2160.
Amber‐Vitos O, Chaturvedi N, Nachliel E, Gutman M, Tsfadia Y. The effect of regulating molecules on the structure of the PPAR‐RXR complex. Biochim Biophys Acta. 2016;1861:1852‐1863. doi:10.1016/j.bbalip.2016.09.003.
Brunmeir R, Xu F. Functional regulation of PPARs through post‐translational modifications. Int J Mol Sci. 2018;19(6):1738. doi:10.3390/ijms19061738.
Lamichane S, Dahal Lamichane B, Kwon SM. Pivotal roles of peroxisome proliferator‐activated receptors (PPARs) and their signal cascade for cellular and whole‐body energy homeostasis. Int J Mol Sci. 2018;19(4):949. doi:10.3390/ijms19040949.
Staels B, Auwerx J. Role of PPAR in the pharmacological regulation of lipoprotein metabolism by fibrates and thiazolidinediones. Curr Pharm des. 1997;3:1‐14.
Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisome proliferator‐activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A. 2001;98:5306‐5311. doi:10.1073/pnas.091021198.
Tanaka T, Yamamoto J, Iwasaki S, et al. Activation of peroxisome proliferator‐activated receptor delta induces fatty acid beta‐oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A. 2003;100:15924‐15929. doi:10.1073/pnas.0306981100.
Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest. 1998;101:1354‐1361. doi:10.1172/jci1235.
Huang JW, Shiau CW, Yang J, et al. Development of small‐molecule cyclin D1‐ablative agents. J Med Chem. 2006;49:4684‐4689. doi:10.1021/jm060057h.
Wagner KD, Wagner N. PPARs and myocardial infarction. Int J Mol Sci. 2020;21(24):9436. doi:10.3390/ijms21249436.
Marx N, Davies MJ, Grant PJ, et al. Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet Diabetes Endocrinol. 2021;9:46‐52. doi:10.1016/s2213-8587(20)30343-0.
Duszka K, Gregor A, Guillou H, König J, Wahli W. Peroxisome proliferator‐activated receptors and caloric restriction‐common pathways affecting metabolism, health, and longevity. Cell. 2020;9(7):1708. doi:10.3390/cells9071708.
Sáez‐Orellana F, Octave JN, Pierrot N. Alzheimer's disease, a lipid story: involvement of peroxisome proliferator‐activated receptor α. Cell. 2020;9(5):1215. doi:10.3390/cells9051215.
Matheson J, Le Foll B. Therapeutic potential of peroxisome proliferator‐activated receptor (PPAR) agonists in substance use disorders: a synthesis of preclinical and human evidence. Cell. 2020;9(5):1196. doi:10.3390/cells9051196.
Elias E, Zhang AY, Manners MT. Novel pharmacological approaches to the treatment of depression. Life (Basel). 2022;12(2):196. doi:10.3390/life12020196.
Quiroga C, Barberena JJ, Alcaraz‐Silva J, et al. The role of peroxisome proliferator‐activated receptor in addiction: a novel drug target. Curr Top Med Chem. 2021;21:964‐975. doi:10.2174/1568026621666210521165532.
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome proliferator‐activated receptors and their novel ligands as candidates for the treatment of non‐alcoholic fatty liver disease. Cell. 2020;9(7):1638. doi:10.3390/cells9071638.
Mantovani A, Byrne CD, Targher G. Efficacy of peroxisome proliferator‐activated receptor agonists, glucagon‐like peptide‐1 receptor agonists, or sodium‐glucose cotransporter‐2 inhibitors for treatment of non‐alcoholic fatty liver disease: a systematic review. Lancet Gastroenterol Hepatol. 2022;7:367‐378. doi:10.1016/s2468-1253(21)00261-2.
Kökény G, Calvier L, Hansmann G. PPARγ and TGFβ‐major regulators of metabolism, inflammation, and fibrosis in the lungs and kidneys. Int J Mol Sci. 2021;22(19):10431. doi:10.3390/ijms221910431.
Luan ZL, Zhang C, Ming WH, Huang YZ, Guan YF, Zhang XY. Nuclear receptors in renal health and disease. EBioMedicine. 2022;76:103855. doi:10.1016/j.ebiom.2022.103855.
Toobian D, Ghosh P, Katkar GD. Parsing the role of PPARs in macrophage processes. Front Immunol. 2021;12:783780. doi:10.3389/fimmu.2021.783780.
Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: a comprehensive review. J Autoimmun. 2020;113:102510. doi:10.1016/j.jaut.2020.102510.
Rzemieniec J, Castiglioni L, Gelosa P, Muluhie M, Mercuriali B, Sironi L. Nuclear receptors in myocardial and cerebral ischemia‐mechanisms of action and therapeutic strategies. Int J Mol Sci. 2021;22(22):12326. doi:10.3390/ijms222212326.
Cao Y. Tumorigenesis as a process of gradual loss of original cell identity and gain of properties of neural precursor/progenitor cells. Cell Biosci. 2017;7:61. doi:10.1186/s13578-017-0188-9.
Zhang F, Du G. Dysregulated lipid metabolism in cancer. World J Biol Chem. 2012;3:167‐174. doi:10.4331/wjbc.v3.i8.167.
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763‐777. doi:10.1038/nrc2222.
Galbraith LCA, Mui E, Nixon C, et al. PPAR‐gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene. 2021;40:2355‐2366. doi:10.1038/s41388-021-01707-7.
Shigeto T, Yokoyama Y, Xin B, Mizunuma H. Peroxisome proliferator‐activated receptor alpha and gamma ligands inhibit the growth of human ovarian cancer. Oncol Rep. 2007;18:833‐840.
Luci S, Giemsa B, Kluge H, Eder K. Clofibrate causes an upregulation of PPAR‐{alpha} target genes but does not alter expression of SREBP target genes in liver and adipose tissue of pigs. Am J Physiol Regul Integr Comp Physiol. 2007;293:R70‐R77. doi:10.1152/ajpregu.00603.2006.
Chandran K, Goswami S, Sharma‐Walia N. Implications of a peroxisome proliferator‐activated receptor alpha (PPARα) ligand clofibrate in breast cancer. Oncotarget. 2016;7:15577‐15599. doi:10.18632/oncotarget.6402.
Wu L, Wang W, Dai M, Li H, Chen C, Wang D. PPARα ligand, AVE8134, and cyclooxygenase inhibitor therapy synergistically suppress lung cancer growth and metastasis. BMC Cancer. 2019;19:1166. doi:10.1186/s12885-019-6379-5.
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28. doi:10.1038/s41392-020-0134-x.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646‐674. doi:10.1016/j.cell.2011.02.013.
Martinasso G, Oraldi M, Trombetta A, et al. Involvement of PPARs in cell proliferation and apoptosis in human colon cancer specimens and in normal and cancer cell lines. PPAR Res. 2007;2007:93416. doi:10.1155/2007/93416.
Castelli V, Catanesi M, Alfonsetti M, et al. PPARα‐selective antagonist GW6471 inhibits cell growth in breast cancer stem cells inducing energy imbalance and metabolic stress. Biomedicine. 2021;9(2):127. doi:10.3390/biomedicines9020127.
Papi A, Guarnieri T, Storci G, et al. Nuclear receptors agonists exert opposing effects on the inflammation dependent survival of breast cancer stem cells. Cell Death Differ. 2012;19:1208‐1219. doi:10.1038/cdd.2011.207.
Ferrari SM, Materazzi G, Baldini E, et al. Antineoplastic effects of PPARγ agonists, with a special focus on thyroid cancer. Curr Med Chem. 2016;23:636‐649. doi:10.2174/0929867323666160203114607.
Ravi Kiran Ammu VVV, Garikapati KK, Krishnamurthy PT, Chintamaneni PK, Pindiprolu S. Possible role of PPAR‐γ and COX‐2 receptor modulators in the treatment of non‐small cell lung carcinoma. Med Hypotheses. 2019;124:98‐100. doi:10.1016/j.mehy.2019.02.024.
Catalano S, Mauro L, Bonofiglio D, et al. In vivo and in vitro evidence that PPARγ ligands are antagonists of leptin signaling in breast cancer. Am J Pathol. 2011;179:1030‐1040. doi:10.1016/j.ajpath.2011.04.026.
Kotta‐Loizou I, Giaginis C, Theocharis S. The role of peroxisome proliferator‐activated receptor‐γ in breast cancer. Anticancer Agents Med Chem. 2012;12:1025‐1044. doi:10.2174/187152012803529664.
Shao W, Kuhn C, Mayr D, et al. Cytoplasmic PPARγ is a marker of poor prognosis in patients with cox‐1 negative primary breast cancers. J Transl Med. 2020;18:94. doi:10.1186/s12967-020-02271-6.
Jarrar MH, Baranova A. PPARgamma activation by thiazolidinediones (TZDs) may modulate breast carcinoma outcome: the importance of interplay with TGFbeta signalling. J Cell Mol Med. 2007;11:71‐87. doi:10.1111/j.1582-4934.2007.00003.x.
Khandekar MJ, Banks AS, Laznik‐Bogoslavski D, et al. Noncanonical agonist PPARγ ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. Proc Natl Acad Sci U S A. 2018;115:561‐566. doi:10.1073/pnas.1717776115.
Tepmongkol S, Keelawat S, Honsawek S, Ruangvejvorachai P. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator‐activated receptor‐gamma. Thyroid. 2008;18:697‐704. doi:10.1089/thy.2008.0056.
Panigrahy D, Singer S, Shen LQ, et al. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest. 2002;110:923‐932. doi:10.1172/jci15634.
Elix C, Pal SK, Jones JO. The role of peroxisome proliferator‐activated receptor gamma in prostate cancer. Asian J Androl. 2018;20:238‐243. doi:10.4103/aja.aja_15_17.
Zaytseva YY, Wallis NK, Southard RC, Kilgore MW. The PPARgamma antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARgamma‐dependent and ‐independent mechanisms. Anticancer Res. 2011;31:813‐823.
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559‐1564. doi:10.1126/science.1203543.
Grau R, Punzón C, Fresno M, Iñiguez MA. Peroxisome‐proliferator‐activated receptor alpha agonists inhibit cyclo‐oxygenase 2 and vascular endothelial growth factor transcriptional activation in human colorectal carcinoma cells via inhibition of activator protein‐1. Biochem J. 2006;395:81‐88. doi:10.1042/bj20050964.
Meissner M, Berlinski B, Gille J, Doll M, Kaufmann R. Peroxisome proliferator activated receptor‐α agonists suppress transforming growth factor‐α‐induced matrix metalloproteinase‐9 expression in human keratinocytes. Clin Exp Dermatol. 2011;36:911‐914. doi:10.1111/j.1365-2230.2011.04125.x.
Meylan P, Pich C, Winkler C, et al. Low expression of the PPARγ‐regulated gene thioredoxin‐interacting protein accompanies human melanoma progression and promotes experimental lung metastases. Sci Rep. 2021;11:7847. doi:10.1038/s41598-021-86329-5.
Wagner N, Wagner KD. PPAR beta/delta and the hallmarks of cancer. Cell. 2020;9(5):1133. doi:10.3390/cells9051133.
Yoshinaga M, Taki K, Somada S, et al. The expression of both peroxisome proliferator‐activated receptor delta and cyclooxygenase‐2 in tissues is associated with poor prognosis in colorectal cancer patients. Dig Dis Sci. 2011;56:1194‐1200. doi:10.1007/s10620-010-1389-9.
Yang L, Zhou J, Ma Q, et al. Knockdown of PPAR δ gene promotes the growth of colon cancer and reduces the sensitivity to bevacizumab in nude mice model. PLoS One. 2013;8:e60715. doi:10.1371/journal.pone.0060715.
Yang L, Olsson B, Pfeifer D, et al. Knockdown of peroxisome proliferator‐activated receptor‐beta induces less differentiation and enhances cell‐fibronectin adhesion of colon cancer cells. Oncogene. 2010;29:516‐526. doi:10.1038/onc.2009.370.
Wang X, Wang G, Shi Y, et al. PPAR‐delta promotes survival of breast cancer cells in harsh metabolic conditions. Oncogenesis. 2016;5:e232. doi:10.1038/oncsis.2016.41.
He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC‐regulated target of nonsteroidal anti‐inflammatory drugs. Cell. 1999;99:335‐345. doi:10.1016/s0092-8674(00)81664-5.
Liu Y, Deguchi Y, Tian R, et al. Pleiotropic effects of PPARD accelerate colorectal tumorigenesis, progression, and invasion. Cancer Res. 2019;79:954‐969. doi:10.1158/0008-5472.Can-18-1790.
Chan JSK, Sng MK, Teo ZQ, Chong HC, Twang JS, Tan NS. Targeting nuclear receptors in cancer‐associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors. Oncogene. 2018;37:160‐173. doi:10.1038/onc.2017.319.
Avena P, Anselmo W, Whitaker‐Menezes D, et al. Compartment‐specific activation of PPARgamma governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12:1360‐1370. doi:10.4161/cc.24289.
Tan MWY, Sng MK, Cheng HS, et al. Deficiency in fibroblast PPARbeta/delta reduces nonmelanoma skin cancers in mice. Cell Death Differ. 2020;27:2668‐2680. doi:10.1038/s41418-020-0535-y.
Sng MK, Chan JSK, Teo Z, et al. Selective deletion of PPARbeta/delta in fibroblasts causes dermal fibrosis by attenuated LRG1 expression. Cell Discov. 2018;4:15. doi:10.1038/s41421-018-0014-5.
Xie ZB, Zhang YF, Jin C, Mao YS, Fu DL. LRG‐1 promotes pancreatic cancer growth and metastasis via modulation of the EGFR/p38 signaling. J Exp Clin Cancer Res. 2019;38:75. doi:10.1186/s13046-019-1088-0.
Zhou Y, Zhang X, Zhang J, Fang J, Ge Z, Li X. LRG1 promotes proliferation and inhibits apoptosis in colorectal cancer cells via RUNX1 activation. PLoS One. 2017;12:e0175122. doi:10.1371/journal.pone.0175122.
Muller‐Brusselbach S, Kömhoff M, Rieck M, et al. Deregulation of tumor angiogenesis and blockade of tumor growth in PPARbeta‐deficient mice. EMBO J. 2007;26:3686‐3698. doi:10.1038/sj.emboj.7601803.
Piqueras L, Reynolds AR, Hodivala‐Dilke KM, et al. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27:63‐69. doi:10.1161/01.ATV.0000250972.83623.61.
Meissner M, Hrgovic I, Doll M, et al. Peroxisome proliferator‐activated receptor delta activators induce IL‐8 expression in nonstimulated endothelial cells in a transcriptional and posttranscriptional manner. J Biol Chem. 2010;285:33797‐33804. doi:10.1074/jbc.M110.137943.
Adamkiewicz J, Kaddatz K, Rieck M, Wilke B, Müller‐Brüsselbach S, Müller R. Proteomic profile of mouse fibroblasts with a targeted disruption of the peroxisome proliferator activated receptor‐beta/delta gene. Proteomics. 2007;7:1208‐1216. doi:10.1002/pmic.200601003.
Panigrahy D, Kaipainen A, Huang S, et al. PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci U S A. 2008;105:985‐990. doi:10.1073/pnas.0711281105.
Pozzi A, Ibanez MR, Gatica AE, et al. Peroxisomal proliferator‐activated receptor‐alpha‐dependent inhibition of endothelial cell proliferation and tumorigenesis. J Biol Chem. 2007;282:17685‐17695. doi:10.1074/jbc.M701429200.
Arima T, Uchiyama M, Nakano Y, et al. Peroxisome proliferator‐activated receptor alpha agonist suppresses neovascularization by reducing both vascular endothelial growth factor and angiopoietin‐2 in corneal alkali burn. Sci Rep. 2017;7:17763. doi:10.1038/s41598-017-18113-3.
Li CG, Mahon C, Sweeney NM, et al. PPARγ interaction with UBR5/ATMIN promotes DNA repair to maintain endothelial homeostasis. Cell Rep. 2019;26:1333‐1343.e7. doi:10.1016/j.celrep.2019.01.013.
Cai W, Yang T, Liu H, et al. Peroxisome proliferator‐activated receptor gamma (PPARgamma): a master gatekeeper in CNS injury and repair. Prog Neurobiol. 2018;163‐164:27‐58. doi:10.1016/j.pneurobio.2017.10.002.
Delerive P, de Bosscher K, Besnard S, et al. Peroxisome proliferator‐activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross‐talk with transcription factors NF‐kappaB and AP‐1. J Biol Chem. 1999;274:32048‐32054. doi:10.1074/jbc.274.45.32048.
Barish GD, Atkins AR, Downes M, et al. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc Natl Acad Sci U S A. 2008;105:4271‐4276. doi:10.1073/pnas.0711875105.
Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W. The PPARalpha‐leukotriene B4 pathway to inflammation control. Nature. 1996;384:39‐43. doi:10.1038/384039a0.
Kobayashi Y, Ueki S, Mahemuti G, et al. Physiological levels of 15‐deoxy‐Delta12,14‐prostaglandin J2 prime eotaxin‐induced chemotaxis on human eosinophils through peroxisome proliferator‐activated receptor‐gamma ligation. J Immunol. 2005;175:5744‐5750. doi:10.4049/jimmunol.175.9.5744.
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non‐alcoholic fatty liver disease. J Hepatol. 2015;62:720‐733. doi:10.1016/j.jhep.2014.10.039.
Vargas‐Sanchez K, Vargas L, Urrutia Y, et al. PPARalpha and PPARbeta/delta are negatively correlated with proinflammatory markers in leukocytes of an obese pediatric population. J Inflamm (Lond). 2020;17:35. doi:10.1186/s12950-020-00264-2.
Ahmed W, Orasanu G, Nehra V, et al. High‐density lipoprotein hydrolysis by endothelial lipase activates PPARalpha: a candidate mechanism for high‐density lipoprotein‐mediated repression of leukocyte adhesion. Circ Res. 2006;98:490‐498. doi:10.1161/01.RES.0000205846.46812.be.
Wang D, DuBois RN. PPARdelta and PGE(2) signaling pathways communicate and connect inflammation to colorectal cancer. Inflamm Cell Signal. 2014;1(6). doi:10.14800/ics.338.
Wang D, Fu L, Ning W, et al. Peroxisome proliferator‐activated receptor delta promotes colonic inflammation and tumor growth. Proc Natl Acad Sci U S A. 2014;111:7084‐7089. doi:10.1073/pnas.1324233111.
Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator‐activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338. doi:10.1016/j.metabol.2020.154338.
Penas F, Mirkin GA, Vera M, et al. Treatment in vitro with PPARalpha and PPARgamma ligands drives M1‐to‐M2 polarization of macrophages from T. cruzi‐infected mice. Biochim Biophys Acta. 2015;1852:893‐904. doi:10.1016/j.bbadis.2014.12.019.
Adhikary T, Wortmann A, Schumann T, et al. The transcriptional PPARbeta/delta network in human macrophages defines a unique agonist‐induced activation state. Nucleic Acids Res. 2015;43:5033‐5051. doi:10.1093/nar/gkv331.
Schug TT, Li X. PPARdelta‐mediated macrophage activation: a matter of fat. Dis Model Mech. 2009;2:421‐422. doi:10.1242/dmm.003913.
Nelson VL, Nguyen HCB, Garcìa‐Cañaveras JC, et al. PPARgamma is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes Dev. 2018;32:1035‐1044. doi:10.1101/gad.312355.118.
Niu Z, Shi Q, Zhang W, et al. Caspase‐1 cleaves PPARgamma for potentiating the pro‐tumor action of TAMs. Nat Commun. 2017;8:766. doi:10.1038/s41467-017-00523-6.
Schumann T, Adhikary T, Wortmann A, et al. Deregulation of PPARbeta/delta target genes in tumor‐associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. Oncotarget. 2015;6:13416‐13433. doi:10.18632/oncotarget.3826.
Yin X, Zeng W, Wu B, et al. PPARalpha inhibition overcomes tumor‐derived exosomal lipid‐induced dendritic cell dysfunction. Cell Rep. 2020;33:108278. doi:10.1016/j.celrep.2020.108278.
Choi JM, Bothwell AL. The nuclear receptor PPARs as important regulators of T‐cell functions and autoimmune diseases. Mol Cells. 2012;33:217‐222. doi:10.1007/s10059-012-2297-y.
Jones DC, Ding X, Daynes RA. Nuclear receptor peroxisome proliferator‐activated receptor alpha (PPARalpha) is expressed in resting murine lymphocytes. The PPARalpha in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem. 2002;277:6838‐6845. doi:10.1074/jbc.M106908200.
Wang H, Franco F, Tsui YC, et al. CD36‐mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol. 2020;21:298‐308. doi:10.1038/s41590-019-0589-5.
Lei J, Hasegawa H, Matsumoto T, Yasukawa M. Peroxisome proliferator‐activated receptor alpha and gamma agonists together with TGF‐beta convert human CD4+CD25− T cells into functional Foxp3+ regulatory T cells. J Immunol. 2010;185:7186‐7198. doi:10.4049/jimmunol.1001437.
Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017;32:377‐391.e9. doi:10.1016/j.ccell.2017.08.004.
Garcia‐Bates TM, Baglole CJ, Bernard MP, Murant TI, Simpson‐Haidaris PJ, Phipps RP. Peroxisome proliferator‐activated receptor gamma ligands enhance human B cell antibody production and differentiation. J Immunol. 2009;183:6903‐6912. doi:10.4049/jimmunol.0900324.
Wejksza K, Lee‐Chang C, Bodogai M, et al. Cancer‐produced metabolites of 5‐lipoxygenase induce tumor‐evoked regulatory B cells via peroxisome proliferator‐activated receptor alpha. J Immunol. 2013;190:2575‐2584. doi:10.4049/jimmunol.1201920.
Burstein HJ, Demetri GD, Mueller E, Sarraf P, Spiegelman BM, Winer EP. Use of the peroxisome proliferator‐activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat. 2003;79:391‐397. doi:10.1023/a:1024038127156.
Kulke MH, Demetri GD, Sharpless NE, et al. A phase II study of troglitazone, an activator of the PPARgamma receptor, in patients with chemotherapy‐resistant metastatic colorectal cancer. Cancer J. 2002;8:395‐399. doi:10.1097/00130404-200209000-00010.
Smith MR, Manola J, Kaufman DS, et al. Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostate‐specific antigen level after radical prostatectomy and/or radiation therapy. Cancer. 2004;101:1569‐1574. doi:10.1002/cncr.20493.
Kebebew E, Peng M, Reiff E, et al. A phase II trial of rosiglitazone in patients with thyroglobulin‐positive and radioiodine‐negative differentiated thyroid cancer. Surgery. 2006;140:960‐966; discussion 966‐967. doi:10.1016/j.surg.2006.07.038.
Yousefi B, Azimi A, Majidinia M, et al. Balaglitazone reverses P‐glycoprotein‐mediated multidrug resistance via upregulation of PTEN in a PPARγ‐dependent manner in leukemia cells. Tumour Biol. 2017;39:1010428317716501. doi:10.1177/1010428317716501.
Chu TH, Chan HH, Kuo HM, et al. Celecoxib suppresses hepatoma stemness and progression by up‐regulating PTEN. Oncotarget. 2014;5:1475‐1490. doi:10.18632/oncotarget.1745.
Han S, Roman J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma‐dependent and PPARgamma‐independent signal pathways. Mol Cancer Ther. 2006;5:430‐437. doi:10.1158/1535-7163.Mct-05-0347.
Mustafa A, Kruger WD. Suppression of tumor formation by a cyclooxygenase‐2 inhibitor and a peroxisome proliferator‐activated receptor gamma agonist in an in vivo mouse model of spontaneous breast cancer. Clin Cancer Res. 2008;14:4935‐4942. doi:10.1158/1078-0432.Ccr-08-0958.
Esmaeili S, Safaroghli‐azar A, Pourbagheri‐Sigaroodi A, et al. Activation of PPARγ intensified the effects of arsenic trioxide in acute promyelocytic leukemia through the suppression of PI3K/Akt pathway: proposing a novel anticancer effect for pioglitazone. Int J Biochem Cell Biol. 2020;122:105739. doi:10.1016/j.biocel.2020.105739.
Vogt T, Hafner C, Bross K, et al. Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer. 2003;98:2251‐2256. doi:10.1002/cncr.11775.
Reichle A, Bross K, Vogt T, et al. Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far‐advanced melanoma and soft tissue sarcoma. Cancer. 2004;101:2247‐2256. doi:10.1002/cncr.20574.
Rani A, Murphy JJ. STAT5 in cancer and immunity. J Interferon Cytokine Res. 2016;36:226‐237. doi:10.1089/jir.2015.0054.
Prost S, Relouzat F, Spentchian M, et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature. 2015;525:380‐383. doi:10.1038/nature15248.
Liu H, Zang C, Fenner MH, et al. Growth inhibition and apoptosis in human Philadelphia chromosome‐positive lymphoblastic leukemia cell lines by treatment with the dual PPARα/γ ligand TZD18. Blood. 2006;107:3683‐3692. doi:10.1182/blood-2005-05-2103.
Bertz J, Zang C, Liu H, et al. Compound 48, a novel dual PPAR alpha/gamma ligand, inhibits the growth of human CML cell lines and enhances the anticancer‐effects of imatinib. Leuk Res. 2009;33:686‐692. doi:10.1016/j.leukres.2008.11.023.
Pagnano KBB, Lopes ABP, Miranda EC, et al. Efficacy and safety of pioglitazone in a phase 1/2 imatinib discontinuation trial (EDI‐PIO) in chronic myeloid leukemia with deep molecular response. Am J Hematol. 2020;95:E321‐E323. doi:10.1002/ajh.25986.
Papi A, Rocchi P, Ferreri AM, Orlandi M. RXRgamma and PPARgamma ligands in combination to inhibit proliferation and invasiveness in colon cancer cells. Cancer Lett. 2010;297:65‐74. doi:10.1016/j.canlet.2010.04.026.
Papi A, Tatenhorst L, Terwel D, et al. PPARgamma and RXRgamma ligands act synergistically as potent antineoplastic agents in vitro and in vivo glioma models. J Neurochem. 2009;109:1779‐1790. doi:10.1111/j.1471-4159.2009.06111.x.
Konopleva M, Elstner E, McQueen TJ, et al. Peroxisome proliferator‐activated receptor gamma and retinoid X receptor ligands are potent inducers of differentiation and apoptosis in leukemias. Mol Cancer Ther. 2004;3:1249‐1262.
Urbanska K, Pannizzo P, Grabacka M, et al. Activation of PPARalpha inhibits IGF‐I‐mediated growth and survival responses in medulloblastoma cell lines. Int J Cancer. 2008;123:1015‐1024. doi:10.1002/ijc.23588.
Drukala J, Urbanska K, Wilk A, et al. ROS accumulation and IGF‐IR inhibition contribute to fenofibrate/PPARalpha ‐mediated inhibition of glioma cell motility in vitro. Mol Cancer. 2010;9:159. doi:10.1186/1476-4598-9-159.
Chowdhury PS, Chamoto K, Kumar A, Honjo T. PPAR‐induced fatty acid oxidation in T cells increases the number of tumor‐reactive CD8(+) T cells and facilitates anti‐PD‐1 therapy. Cancer Immunol Res. 2018;6:1375‐1387. doi:10.1158/2326-6066.Cir-18-0095.
Fröhlich E, Wahl R. Chemotherapy and chemoprevention by thiazolidinediones. Biomed Res Int. 2015;2015:845340. doi:10.1155/2015/845340.
Higuchi T, Yamamoto J, Sugisawa N, et al. PPARγ agonist pioglitazone in combination with cisplatinum arrests a chemotherapy‐resistant osteosarcoma PDOX model. Cancer Genomics Proteomics. 2020;17:35‐40. doi:10.21873/cgp.20165.
Chen L, Bush CR, Necela BM, et al. RS5444, a novel PPARgamma agonist, regulates aspects of the differentiated phenotype in nontransformed intestinal epithelial cells. Mol Cell Endocrinol. 2006;251:17‐32. doi:10.1016/j.mce.2006.02.006.
Yu HN, Noh EM, Lee YR, et al. Troglitazone enhances tamoxifen‐induced growth inhibitory activity of MCF‐7 cells. Biochem Biophys Res Commun. 2008;377:242‐247. doi:10.1016/j.bbrc.2008.09.111.
Yao CJ, Lai GM, Chan CF, Cheng AL, Yang YY, Chuang SE. Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone. Int J Cancer. 2006;118:773‐779. doi:10.1002/ijc.21361.
Yan KH, Yao CJ, Chang HY, Lai GM, Cheng AL, Chuang SE. The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells. Mol Carcinog. 2010;49:235‐246. doi:10.1002/mc.20593.
An Z, Liu X, Song H, et al. Effect of troglitazone on radiation sensitivity in cervix cancer cells. Radiat Oncol J. 2012;30:78‐87. doi:10.3857/roj.2012.30.2.78.
Zhong WB, Tsai YC, Chin LH, et al. A synergistic anti‐cancer effect of troglitazone and lovastatin in a human anaplastic thyroid cancer cell line and in a mouse xenograft model. Int J Mol Sci. 2018;19(7):1834. doi:10.3390/ijms19071834.
Bräutigam K, Biernath‐Wüpping J, Bauerschlag DO, et al. Combined treatment with TRAIL and PPARγ ligands overcomes chemoresistance of ovarian cancer cell lines. J Cancer Res Clin Oncol. 2011;137:875‐886. doi:10.1007/s00432-010-0952-2.
Park BH, Lee SB, Stolz DB, Lee YJ, Lee BC. Synergistic interactions between heregulin and peroxisome proliferator‐activated receptor‐gamma (PPARgamma) agonist in breast cancer cells. J Biol Chem. 2011;286:20087‐20099. doi:10.1074/jbc.M110.191718.
Plissonnier ML, Fauconnet S, Bittard H, Mougin C, Rommelaere J, Lascombe I. Cell death and restoration of TRAIL‐sensitivity by ciglitazone in resistant cervical cancer cells. Oncotarget. 2017;8:107744‐107762. doi:10.18632/oncotarget.22632.
Cramer CK, Alphonse‐Sullivan N, Isom S, et al. Safety of pioglitazone during and after radiation therapy in patients with brain tumors: a phase I clinical trial. J Cancer Res Clin Oncol. 2019;145:337‐344. doi:10.1007/s00432-018-2791-5.
Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019;59:125‐132. doi:10.1016/j.semcancer.2019.07.009.
Teresi RE, Waite KA. PPARgamma, PTEN, and the fight against cancer. PPAR Res. 2008;2008:932632. doi:10.1155/2008/932632.
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin‐like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30:586‐623. doi:10.1210/er.2008-0047.
Pollak M. Insulin and insulin‐like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915‐928. doi:10.1038/nrc2536.
Pollak MN, Schernhammer ES, Hankinson SE. Insulin‐like growth factors and neoplasia. Nat Rev Cancer. 2004;4:505‐518. doi:10.1038/nrc1387.
Belfiore A, Malaguarnera R. Insulin receptor and cancer. Endocr Relat Cancer. 2011;18:R125‐R147. doi:10.1530/erc-11-0074.
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450‐461. doi:10.1016/j.ccell.2015.03.001.
Bahrambeigi S, Molaparast M, Sohrabi F, et al. Targeting PPAR ligands as possible approaches for metabolic reprogramming of T cells in cancer immunotherapy. Immunol Lett. 2020;220:32‐37. doi:10.1016/j.imlet.2020.01.006.
Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ. Genetic absence of PD‐1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med. 2015;212:1125‐1137. doi:10.1084/jem.20142237.
Tumeh PC, Harview CL, Yearley JH, et al. PD‐1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568‐571. doi:10.1038/nature13954.
Chowdhury PS, Chamoto K, Honjo T. Combination therapy strategies for improving PD‐1 blockade efficacy: a new era in cancer immunotherapy. J Intern Med. 2018;283:110‐120. doi:10.1111/joim.12708.
Smallridge RC, Copland JA, Brose MS, et al. Efatutazone, an oral PPAR‐γ agonist, in combination with paclitaxel in anaplastic thyroid cancer: results of a multicenter phase 1 trial. J Clin Endocrinol Metab. 2013;98:2392‐2400. doi:10.1210/jc.2013-1106.
Takeuchi A, Endo M, Kawai A, et al. Randomized placebo‐controlled double‐blind phase II study of zaltoprofen for patients with diffuse‐type and unresectable localized tenosynovial giant cell tumors: the REALIZE study. Front Oncol. 2022;12:900010. doi:10.3389/fonc.2022.900010.
Mueller E, Smith M, Sarraf P, et al. Effects of ligand activation of peroxisome proliferator‐activated receptor gamma in human prostate cancer. Proc Natl Acad Sci U S A. 2000;97:10990‐10995. doi:10.1073/pnas.180329197.
Girnun GD, Smith WM, Drori S, et al. APC‐dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci U S A. 2002;99:13771‐13776. doi:10.1073/pnas.162480299.
Yang DR, Lin SJ, Ding XF, et al. Higher expression of peroxisome proliferator‐activated receptor γ or its activation by agonist thiazolidinedione‐rosiglitazone promotes bladder cancer cell migration and invasion. Urology. 2013;81(5):1109.e1‐6. doi:10.1016/j.urology.2012.12.027.
Kostapanos MS, Elisaf MS, Mikhailidis DP. Pioglitazone and cancer: angel or demon? Curr Pharm des. 2013;19:4913‐4929. doi:10.2174/13816128113199990294.
Jin SM, Song SO, Jung CH, et al. Risk of bladder cancer among patients with diabetes treated with a 15 mg pioglitazone dose in Korea: a multi‐center retrospective cohort study. J Korean Med Sci. 2014;29:238‐242. doi:10.3346/jkms.2014.29.2.238.
Azoulay L, Yin H, Filion KB, et al. The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case‐control study. BMJ. 2012;344:e3645. doi:10.1136/bmj.e3645.
Zhu Z, Shen Z, Lu Y, Zhong S, Xu C. Increased risk of bladder cancer with pioglitazone therapy in patients with diabetes: a meta‐analysis. Diabetes Res Clin Pract. 2012;98:159‐163. doi:10.1016/j.diabres.2012.05.006.
Heudobler D, Rechenmacher M, Lüke F, et al. Peroxisome proliferator‐activated receptors (PPAR)γ agonists as master modulators of tumor tissue. Int J Mol Sci. 2018;19(11):3540. doi:10.3390/ijms19113540.
Oprea TI, Bauman JE, Bologa CG, et al. Drug repurposing from an academic perspective. Drug Discov Today Ther Strateg. 2011;8:61‐69. doi:10.1016/j.ddstr.2011.10.002.
Oettle H, Richards D, Ramanathan RK, et al. A phase III trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer. Ann Oncol. 2005;16:1639‐1645. doi:10.1093/annonc/mdi309.
فهرسة مساهمة: Keywords: PPARs; cancer; combinational therapy; therapeutic targets; tumor microenvironment
المشرفين على المادة: 0 (Peroxisome Proliferator-Activated Receptors)
0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20230913 Date Completed: 20240805 Latest Revision: 20240805
رمز التحديث: 20240806
مُعرف محوري في PubMed: PMC10902584
DOI: 10.1111/jcmm.17931
PMID: 37700501
قاعدة البيانات: MEDLINE