دورية أكاديمية

The potential immuno-stimulating effect of curcumin, piperine, and taurine combination in hepatocellular carcinoma; a pilot study.

التفاصيل البيبلوغرافية
العنوان: The potential immuno-stimulating effect of curcumin, piperine, and taurine combination in hepatocellular carcinoma; a pilot study.
المؤلفون: Kotb RR; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt., Afifi AM; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt., El-Houseini ME; Medical Biochemistry and molecular biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt., Ezz-Elarab M; National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt., Basalious EB; Pharmaceutics and Industrial Pharmacy department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt., Omran MM; Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.; Biological science division, University of Chicago, Chicago, IL, USA., Abdellateif MS; Medical Biochemistry and molecular biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt. mona-sayed@cu.edu.eg.
المصدر: Discover. Oncology [Discov Oncol] 2023 Sep 13; Vol. 14 (1), pp. 169. Date of Electronic Publication: 2023 Sep 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101775142 Publication Model: Electronic Cited Medium: Internet ISSN: 2730-6011 (Electronic) Linking ISSN: 27306011 NLM ISO Abbreviation: Discov Oncol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [New York] : Springer, [2021]-
مستخلص: Background: This is a phase II clinical trial to investigate the immunotherapeutic effect of Curcumin, Piperine, and Taurine (CPT) combination in hepatocellular carcinoma (HCC).
Methods: Twenty-six HCC patients aged (50-80 years) were recruited for administration of a daily dose of 5 g of curcumin, 50 mg of piperine, and 500 mg of taurine divided into three doses for successive 3 months. The three components (CPT) were prepared in one capsule. Patients were assessed after each month (cycle) for the plasma levels of CD4, CD8, CD25, Interleukins-2 (IL-2), IL-6, IL-12, Interferon-gamma (IFN- γ), Lactate dehydrogenase (LDH), and Vascular endothelial growth factor (VEGF), FOXP3 mRNA, and miRNA 21.
Results: There was a significant increase in the plasma levels of CD4 and CD8, while a significant decrease in the CD25 level after the second and third cycles compared to the baseline level [P < 0.001 for both]. Also, there was a significant increase in the plasma levels of IL-2, IL-12, and IFN-γ [ P = 0.001, P = 0.006, and P = 0.029; respectively], while there was a significant decrease in IL-6, VEGF-α, LDH, and Alpha-fetoprotein (AFP) after CPT administration compared to the baseline levels [P < 0.001, P < 0.001, P = 0.020, and P = 0.004; respectively]. The expression level of miRNA-21 was significantly decreased after CPT administration compared to the baseline level [5.5±0.88, 4.1±0.78, 3±0.75, and 2.5±0.76; respectively, P<0.001]. Though there was a noticeable decrease in the FOXP3 expression after each cycle, however, it didn't reach a significant level [5.3±0.8, 4.2±0.76, 3.2±0.67, and 2.5±0.79; respectively, P=0.184].
Conclusion: CPT could exhibit a potential immune-stimulating effect in HCC patients. The current trial had been registered at the National Hepatology and Tropical Medicine Research Institute (NHTMRI), with a registration number of NHTMRI-IRB 2-21 on 5th January 2021.
(© 2023. Springer Science+Business Media, LLC.)
References: Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660 . (PMID: 10.3322/caac.2166033538338)
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. https://doi.org/10.1038/s41572-020-00240-3 . (PMID: 10.1038/s41572-020-00240-333479224)
Getachew S, Getachew E, Gizaw M, Ayele W, Addissie A, Kantelhardt EJ. Cervical cancer screening knowledge and barriers among women in Addis Ababa, Ethiopia. PLoS ONE. 2019;14(5):e0216522. https://doi.org/10.1371/journal.pone.0216522 . (PMID: 10.1371/journal.pone.0216522310751226510425)
Bahnassy AA, Abdellateif MS, Zekri AN. Cancer in Africa: is it a genetic or environmental. Health problem? Front Oncol. 2020;10:604214. https://doi.org/10.3389/fonc.2020.604214 . (PMID: 10.3389/fonc.2020.604214334091547781064)
Lee TK, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022;19(1):26–44. https://doi.org/10.1038/s41575-021-00508-3 . (PMID: 10.1038/s41575-021-00508-334504325)
Lu W, Jin XL, Yang C, et al. Comparison of efficacy between TACE combined with apatinib and TACE alone in the treatment of intermediate and advanced hepatocellular carcinoma: a single-center randomized controlled trial. Cancer Biol Ther. 2017;18(6):433–8. https://doi.org/10.1080/15384047.2017.1323589 . (PMID: 10.1080/15384047.2017.1323589285485875536939)
Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5(1):146. https://doi.org/10.1038/s41392-020-00264-x . (PMID: 10.1038/s41392-020-00264-x327822757419547)
Chen Z, Xie H, Hu M, et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 2020;10(9):2993–3036. (PMID: 330426317539784)
Jadlowiec CC, Taner T. Liver transplantation: current status and challenges. World J Gastroenterol. 2016;22:4438–45. https://doi.org/10.3748/wjg.v22.i18.4438 . (PMID: 10.3748/wjg.v22.i18.4438271821554858627)
El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27. https://doi.org/10.1056/NEJMra1001683 . (PMID: 10.1056/NEJMra100168321992124)
Liang HH, Wei PL, Hung CS, Wu CT, Wang W, Huang MT, et al. MicroRNA-200a/b influenced the therapeutic effects of curcumin in hepatocellular carcinoma (HCC) cells. Tumour Biol. 2013;34(5):3209–18. https://doi.org/10.1007/s13277-013-0891-z . (PMID: 10.1007/s13277-013-0891-z23760980)
Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience. 2019;406:1–21. https://doi.org/10.1016/j.neuroscience.2019.02.020 . (PMID: 10.1016/j.neuroscience.2019.02.02030825584)
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–25. https://doi.org/10.1007/978-0-387-46401-5&#95;3 . (PMID: 10.1007/978-0-387-46401-5_317569207)
Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr. 2019;59(1):89–101. https://doi.org/10.1080/10408398.2017.1358139 . (PMID: 10.1080/10408398.2017.135813928799796)
Zhu J, Zhao B, Xiong P, Wang C, Zhang J, Tian X, et al. Curcumin induces autophagy via inhibition of yes-associated protein (yap) in human colon cancer cells. Med Sci Monit. 2018;24:7035–42. https://doi.org/10.12659/MSM.910650 . (PMID: 10.12659/MSM.910650302815856354647)
Sun C, Zhang S, Liu C, Liu X. Curcumin promoted mir-34a expression and suppressed proliferation of gastric cancer cells. Cancer Biother Radiopharm. 2019;34(10):634–41. https://doi.org/10.1089/cbr.2019.2874 . (PMID: 10.1089/cbr.2019.287431539270)
Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients. 2019;11(12):2989. https://doi.org/10.3390/nu11122989 . (PMID: 10.3390/nu11122989318177186950067)
Calaf GM, Ponce-Cusi R, Carrión F. Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep. 2018;40(4):2381–8. https://doi.org/10.3892/or.2018.6603 . (PMID: 10.3892/or.2018.660330066930)
Ren B, Luo S, Tian X, Jiang Z, Zou G, Xu F, et al. Curcumin inhibits liver cancer by inhibiting damp molecule hsp70 and tlr4 signaling. Oncol Rep. 2018;40(2):895–901. https://doi.org/10.3892/or.2018.6485Abstract . (PMID: 10.3892/or.2018.6485Abstract29901164)
Zheng R, Deng Q, Liu Y, Zhao P. Curcumin inhibits gastric Carcinoma Cell Growth and induces apoptosis by suppressing the Wnt/β-Catenin signaling pathway. Med Sci Monit. 2017;23:163–71. https://doi.org/10.12659/msm.902711 . (PMID: 10.12659/msm.902711280778375248567)
Xu X, Qin J, Liu W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene. 2014;546(2):226–32. https://doi.org/10.1016/j.gene.2014.06.006 . (PMID: 10.1016/j.gene.2014.06.00624910117)
Zhang L, Cheng X, Gao Y, Zhang C, Bao J, Guan H, et al. Curcumin inhibits metastasis in human papillary thyroid carcinoma BCPAP cells via down-regulation of the TGF-β/Smad2/3 signaling pathway. Exp Cell Res. 2016;341(2):157–65. https://doi.org/10.1016/j.yexcr.2016.01.006 . (PMID: 10.1016/j.yexcr.2016.01.00626826337)
Liang WF, Gong YX, Li HF, Sun FL, Li WL, Chen DQ, et al. Curcumin activates ROS signaling to promote pyroptosis in hepatocellular carcinoma HepG2 cells. In Vivo. 2021;35(1):249–57. https://doi.org/10.21873/invivo.12253 . (PMID: 10.21873/invivo.12253334024717880758)
Bai C, Zhao J, Su J, Chen J, Cui X, Sun M, et al. Curcumin induces mitochondrial apoptosis in human hepatoma cells through BCLAF1-mediated modulation of PI3K/AKT/GSK-3β signaling. Life Sci. 2022;306:120804. https://doi.org/10.1016/j.lfs.2022.120804 . (PMID: 10.1016/j.lfs.2022.12080435882275)
Guo L, Li H, Fan T, Ma Y, Wang L. Synergistic efficacy of curcumin and anti-programmed cell death-1 in hepatocellular carcinoma. Life Sci. 2021;279:119359. https://doi.org/10.1016/j.lfs.2021.119359 . (PMID: 10.1016/j.lfs.2021.11935933753114)
Li J, Wei H, Liu Y, Li Q, Guo H, Guo Y, et al. Curcumin inhibits Hepatocellular carcinoma via regulating miR-21/TIMP3 Axis. Evid Based Complement Alternat Med. 2020;2020:2892917. https://doi.org/10.1155/2020/2892917 . (PMID: 10.1155/2020/2892917327243227382716)
Aerts L, Van Assche FA. Taurine and taurine-deficiency in the perinatal period. J Perinat Med. 2002;30(4):281–6. https://doi.org/10.1515/JPM.2002.040 . (PMID: 10.1515/JPM.2002.04012235714)
Räihä NC, Heinonen K, Rassin DK, Gaull GE. Milk protein quantity and quality in low-birthweight infants: I. metabolic responses and effects on growth. Pediatrics. 1976;57(5):659–84. (PMID: 10.1542/peds.57.5.6597767)
Chesney RW. Taurine: its biological role and clinical implications. Adv Pediatr. 1985;32:1–42. (PMID: 3909770)
Schaffer SW, Jong CJ, Ito T, Azuma J. Effect of taurine on ischemiareperfusion injury. Amino Acids. 2014;46:21–30. 10.1007/ s00726-012-1378-8. (PMID: 10.1007/s00726-012-1378-822936072)
Marcinkiewicz J, Kontny E. Taurine and inflammatory diseases. Amino Acids. 2014;46:7–20. https://doi.org/10.1007/s00726-012-1361-4 . (PMID: 10.1007/s00726-012-1361-422810731)
Wang J, Qi C, Liu L, Zhao L, Cui W, Tian Y, et al. Taurine protects primary neonatal cardiomyocytes against apoptosis induced by hydrogen peroxide. Int Heart J. 2018;59:190–6. https://doi.org/10.1536/ihj.16-372 . (PMID: 10.1536/ihj.16-37229279520)
Li H, Ruan WJ, Liu LQ, Wan HF, Yang XH, Zhu WF, et al. Impact of taurine on the proliferation and apoptosis of human cervical carcinoma cells and its mechanism. Chin Med J (Engl). 2019;132(8):948–56. https://doi.org/10.1097/CM9.0000000000000162 . (PMID: 10.1097/CM9.000000000000016230958437)
Tu S, Zhang XL, Wan HF, Xia YQ, Liu ZQ, Yang XH, et al. Effect of taurine on cell proliferation and apoptosis human lung cancer A549 cells. Oncol Lett. 2018;15:5473–80. https://doi.org/10.3892/ol.2018.8036 . (PMID: 10.3892/ol.2018.8036295521885840730)
Zhang X, Lu H, Wang Y, Liu C, Zhu W, Zheng S, et al. Taurine induces apoptosis of breast cancer cells by regulating apoptosisrelated proteins of mitochondria. Int J Mol Med. 2015;35:218–26. https://doi.org/10.3892/ijmm.2014.2002 . (PMID: 10.3892/ijmm.2014.200225395275)
Tu S, Zhang X, Luo D, Liu Z, Yang X, Wan H, et al. Effect of taurine on proliferation and apoptosis of human hepatocellular carcinoma (HHCC) HepG2 cells. Exp Ther Med. 2015;10:193–200. https://doi.org/10.3892/etm.2015.2476 . (PMID: 10.3892/etm.2015.2476261709344486811)
Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS, Piperine. A review of its biological effects. Phytother Res. 2021;35(2):680–700. https://doi.org/10.1002/ptr.6855 . (PMID: 10.1002/ptr.685532929825)
Smilkov K, Ackova DG, Cvetkovski A, Ruskovska T, Vidovic B, Atalay M. Piperine: old spice and New Nutraceutical? Curr Pharm Des. 2019;25(15):1729–39. https://doi.org/10.2174/1381612825666190701150803 . (PMID: 10.2174/138161282566619070115080331267856)
Samuel M, Oliver SV, Coetzee M, Brooke BD. The larvicidal effects of black pepper (Piper nigrum L.) and piperine against insecticide resistant and susceptible strains of anopheles malaria vector mosquitoes. Parasit Vectors. 2016;9:238. https://doi.org/10.1186/s13071-016-1521-6 . (PMID: 10.1186/s13071-016-1521-6271179134847181)
Philipova I, Valcheva V, Mihaylova R, Mateeva M, Doytchinova I, Stavrakov G. Synthetic piperine amide analogs with antimycobacterial activity. Chem Biol Drug Des. 2018;91(3):763–8. https://doi.org/10.1111/cbdd.13140 . (PMID: 10.1111/cbdd.1314029130602)
Meghwal M, Goswami TK. Piper nigrum and piperine: an update. Phytother Res. 2013;27(8):1121–30. https://doi.org/10.1002/ptr.4972 . (PMID: 10.1002/ptr.497223625885)
de Souza Grinevicius VM, Kviecinski MR, Santos Mota NS, Ourique F, Porfirio Will Castro LS, Andreguetti RR, et al. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells. J Ethnopharmacol. 2016;189:139–47. https://doi.org/10.1016/j.jep.2016.05.020 . (PMID: 10.1016/j.jep.2016.05.02027178634)
Ding Y, Ding Y, Wang Y, Wang C, Gao M, Xu Y, et al. Soluplus®/TPGS mixed micelles for co-delivery of docetaxel and piperine for combination cancer therapy. Pharm Dev Technol. 2020;25(1):107–15. https://doi.org/10.1080/10837450.2019.1679834 . (PMID: 10.1080/10837450.2019.167983431603017)
Yoo ES, Choo GS, Kim SH, Woo JS, Kim HJ, Park YS, et al. Antitumor and apoptosis-inducing Effects of Piperine on Human Melanoma cells. Anticancer Res. 2019;39(4):1883–92. https://doi.org/10.21873/anticanres.13296 . (PMID: 10.21873/anticanres.1329630952729)
Sehgal A, Kumar M, Jain M, Dhawan DK. Combined effects of curcumin and piperine in ameliorating benzo(a)pyrene induced DNA damage. Food Chem Toxicol. 2011;49(11):3002–6. https://doi.org/10.1016/j.fct.2011.07.058 . (PMID: 10.1016/j.fct.2011.07.05821827816)
Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 2010;122(3):777–85. https://doi.org/10.1007/s10549-009-0612-x . (PMID: 10.1007/s10549-009-0612-x19898931)
Hosseini A, Ghorbani A. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed. 2015;5(2):84–97. (PMID: 259499494418057)
Afifi AM, El-Husseiny AM, Tabashy RH, Khalil MA, El-Houseini ME. Sorafenib- taurine combination model for hepatocellular carcinoma cells: immunological aspects. Asian Pac J Cancer Prev. 2019;20(10):3007–13. https://doi.org/10.31557/APJCP.2019.20.10.3007 . (PMID: 10.31557/APJCP.2019.20.10.3007316531486982677)
El-Houseini ME, El-Agoza IA, Sakr MM, El-Malky GM. Novel protective role of curcumin and taurine combination against experimental hepatocarcinogenesis. Exp Ther Med. 2017;13(1):29–36. https://doi.org/10.3892/etm.2016.3952 . (PMID: 10.3892/etm.2016.395228123463)
Hatab HM, Abdel Hamid FF, Soliman AF, Al-Shafie TA, Ismail YM, El-Houseini ME. A combined treatment of curcumin, piperine, and taurine alters the circulating levels of IL-10 and miR-21 in hepatocellular carcinoma patients: a pilot study. J Gastrointest Oncol. 2019;10(4):766–76. https://doi.org/10.21037/jgo.2019.03.07 . (PMID: 10.21037/jgo.2019.03.07313920576657326)
Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92. https://doi.org/10.3390/foods6100092 . (PMID: 10.3390/foods6100092290654965664031)
McGurk KA, Kasapi M, Ware JS. Effect of taurine administration on symptoms, severity, or clinical outcome of dilated cardiomyopathy and heart failure in humans: a systematic review. Wellcome Open Res. 2022;7:9. https://doi.org/10.12688/wellcomeopenres.17505.3 . (PMID: 10.12688/wellcomeopenres.17505.3358550739257265)
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262 . (PMID: 10.1006/meth.2001.126211846609)
Tang DQ, Bian TT, Zheng XX, Li Y, Wu XW, Li YJ, et al. LC-MS/MS methods for the determination of edaravone and/or taurine in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr. 2014;28(9):1173–82. https://doi.org/10.1002/bmc.3139 . (PMID: 10.1002/bmc.313924706508)
Wang XM, Zhang QZ, Yang J, Zhu R, Zhang J, Cai LJ, et al. Validated HPLC–MS/MS method for simultaneous determination of curcumin and piperine in human plasma. Trop J Pharm Res. 2012;11(4):621–9. (PMID: 10.4314/tjpr.v11i4.13)
Fu G, Miao L, Wang M, Guo M, Wang C, Ji F, et al. The postoperative immunosuppressive phenotypes of peripheral T helper cells are associated with poor prognosis of breast cancer patients. Immunol Invest. 2017;46:647–62. (PMID: 10.1080/08820139.2017.136033728872974)
Liu C, Wu S, Meng X, Liu G, Chen D, Cong Y, et al. Predictive value of peripheral regulatory T cells in non-small cell lung cancer patients undergoing radiotherapy. Oncotarget. 2017;8:43427–38. (PMID: 10.18632/oncotarget.15238286247815522158)
Li F, Sun Y, Huang J, Xu W, Liu J, Yuan Z. CD4/CD8 + T cells, DC subsets, Foxp3, and IDO expression are predictive indictors of gastric cancer prognosis. Cancer Med. 2019;8:7330–44. (PMID: 10.1002/cam4.2596316315666885892)
Bhattacharyya S, Md Hossain SD, Mohanty S, Sen SG, Chattopadhyay S, Banerjee S, et al. Curcumin reverses T cell-mediated adaptive Immune Dysfunctions in Tumor-Bearing Hosts. Cell Mol Immunol. 2010;7(4):306–15. https://doi.org/10.1038/cmi.2010.11 . (PMID: 10.1038/cmi.2010.11203056844003225)
Fu X, He Y, Li M, Huang Z, Najafi M. Targeting of the tumor microenvironment by curcumin. BioFactors. 2021;47(6):914–32. https://doi.org/10.1002/biof.1776 . (PMID: 10.1002/biof.177634375483)
Churchill M, Chadburn A, Bilinski RT, Bertagnolli MM. Inhibition of intestinal tumors by curcumin is associated with changes in the intestinalimmune cell profile. J Surg Res. 2000;89:169–75. https://doi.org/10.1006/jsre.2000.5826 . (PMID: 10.1006/jsre.2000.582610729246)
Guo C, Hou X, Liu Y, Zhang Y, Xu H, Zhao F, et al. Novel Chinese angelica polysaccharide biomimetic nanomedicine to curcumin delivery for hepatocellular carcinoma treatment and immunomodulatory effect. Phytomedicine. 2021;80:153356. https://doi.org/10.1016/j.phymed.2020.153356 . (PMID: 10.1016/j.phymed.2020.15335633039729)
Zhao GJ, Lu ZQ, Tang LM, Wu ZS, Wang DW, Zheng JY, et al. Curcumin inhibits suppressive capacity of naturally occurring CD4 + CD25 + regulatory T cells in mice in vitro. Int Immunopharmacol. 2012;14(1):99–106. https://doi.org/10.1016/j.intimp.2012.06.016 . (PMID: 10.1016/j.intimp.2012.06.01622749847)
Wang J, Chu Y, Xu M, Zhang X, Zhou Y, Xu M. miR-21 promotes cell migration and invasion of hepatocellular carcinoma by targeting KLF5. Oncol Lett. 2019;17(2):2221–7. https://doi.org/10.3892/ol.2018.9843 . (PMID: 10.3892/ol.2018.984330675287)
Li ZB, Li ZZ, Li L, Chu HT, Jia M. MiR-21 and miR-183 can simultaneously target SOCS6 and modulate growth and invasion of hepatocellular carcinoma (HCC) cells. Eur Rev Med Pharmacol Sci. 2015;19(17):3208–17. (PMID: 26400524)
Chen S, Yang C, Sun C, Sun Y, Yang Z, Cheng S, et al. Mir-21-5p suppressed the sensitivity of hepatocellular carcinoma cells to cisplatin by targeting FASLG. DNA Cell Biol. 2019;38(8):865–73. https://doi.org/10.1089/dna.2018.4529 . (PMID: 10.1089/dna.2018.452931225740)
Wang X, Zhang J, Zhou L, Lu P, Zheng ZG, Sun W, et al. Significance of serum microRNA-21 in diagnosis of hepatocellular carcinoma (HCC): clinical analyses of patients and an HCC rat model. Int J Clin Exp Pathol. 2015;8:1466–78. (PMID: 259730324396214)
Faloppi L, Scartozzi M, Bianconi M, Svegliati Baroni G, Toniutto P, Giampieri R, et al. The role of LDH serum levels in predicting global outcome in HCC patients treated with sorafenib: implications for clinical management. BMC Cancer. 2014;14:110. https://doi.org/10.1186/1471-2407-14-110 . (PMID: 10.1186/1471-2407-14-110245521443930857)
Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002;64:993–8. (PMID: 10.1016/S0006-2952(02)01168-112213597)
Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88:1474–80. (PMID: 10.1152/jappl.2000.88.4.147410749844)
Dei Cas M, Ghidoni R. Dietary curcumin: correlation between bioavailability and health potential. Nutrients. 2019;11(9):2147. https://doi.org/10.3390/nu11092147 . (PMID: 10.3390/nu11092147315003616770259)
Volak LP, Hanley MJ, Masse G, Hazarika S, Harmatz JS, Badmaev V, et al. Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers. Br J Clin Pharmacol. 2013;75(2):450–62. https://doi.org/10.1111/j.1365-2125.2012.04364.x . (PMID: 10.1111/j.1365-2125.2012.04364.x22725836)
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(4):353–6. https://doi.org/10.1055/s-2006-957450 . (PMID: 10.1055/s-2006-9574509619120)
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18. https://doi.org/10.1021/mp700113r . (PMID: 10.1021/mp700113r17999464)
فهرسة مساهمة: Keywords: Curcumin; HCC; Immunomodulation; Liver cancer; Piperine; Taurine
تواريخ الأحداث: Date Created: 20230913 Latest Revision: 20231120
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC10499730
DOI: 10.1007/s12672-023-00785-1
PMID: 37704828
قاعدة البيانات: MEDLINE
الوصف
تدمد:2730-6011
DOI:10.1007/s12672-023-00785-1