دورية أكاديمية

Towards a promising systematic approach to the synthesis of CZTS solar cells.

التفاصيل البيبلوغرافية
العنوان: Towards a promising systematic approach to the synthesis of CZTS solar cells.
المؤلفون: Najm AS; Department of Electrical, Electronics and System, FKAB, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia. asmaa.soheil@yahoo.com.; Petroleum Research and Development Center, Ministry of Oil, Baghdad, Iraq. asmaa.soheil@yahoo.com.; Department of Chemical Engineering, University of Technology, Baghdad, Iraq. asmaa.soheil@yahoo.com., Al-Ghamdi A; Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.; Basic & Applied Scientific Research Center (BASRC), Renewable and Sustainable Energy Unit, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia., Amin MT; Department of Mechanical Engineering Technology, Yanbu Industrial College, 41912, Yanbu Al-Sinaiyah City, Saudi Arabia., Al Ghamdi A; Department of Chemical Engineering Technology, Yanbu Industrial College, 41912, Yanbu Al-Sinaiyah City, Saudi Arabia., Moria H; Department of Mechanical Engineering Technology, Yanbu Industrial College, 41912, Yanbu Al-Sinaiyah City, Saudi Arabia., Holi AM; Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Al-Qadisiyah, 58002, Iraq., Abed AM; Department of Air Conditioning and Refrigeration, Al-Mustaqbal University, Babylon, Iraq., Al-Zahrani AA; Imam Abdulrahman-Bin Fiasal University, Eastern Region, Dammam, Saudi Arabia., Sopian K; Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia., Bais B; Department of Electrical, Electronics and System, FKAB, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia., Sultan AJ; Department of Chemical Engineering, University of Technology, Baghdad, Iraq.
المصدر: Scientific reports [Sci Rep] 2023 Sep 18; Vol. 13 (1), pp. 15418. Date of Electronic Publication: 2023 Sep 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مستخلص: This study aims to enhance the CZTS device's overall efficiency, the key research area has been identified in this study is to explore the effects of a novel, low-cost, and simplified, deposition method to improve the optoelectronic properties of the buffer layer in the fabrication of CZTS thin film solar cells. Herein, an effective way of addressing this challenge is through adjusting the absorbers' structure by the concept of doping, sensitized CdS thin film by the bi-functional linker, and an environmentally friendly catalytic green agent. The Linker Assisted and Chemical Bath Deposition (LA-CBD) method was introduced as an innovative and effective hybrid sensitization approach. In the one-step synthesis process, Salvia dye, Ag, and 3-Mercaptopropionic acid (MPA) were used. Generally, the results for all samples displayed varying bandgap as achieved between (2.21-2.46) eV, hexagonal structure with considerably decreased strain level, broader grain size, and dramatically enhanced crystalline property. Hence, the rudimentary CdS/CZTS solar cell devices were fabricated for the application of these novel CdS films. Preliminary CZTS thin film solar cell fabrication results in the highest conversion efficiency of 0.266% obtained CdS + Salvia dye, indicating the potential use of the CdS films as a buffer layer for CZTS photovoltaic devices.
(© 2023. Springer Nature Limited.)
References: Khot, K. V. et al. Photocurrent enhancement in a Cu 2 Cd(SSe) 2 photoanode synthesized via an arrested precipitation route. New J. Chem. 40(4), 3277–3288. https://doi.org/10.1039/c5nj03046c (2016). (PMID: 10.1039/c5nj03046c)
Bagade, C. S., Ghanwat, V. B., Khot, K. V. & Bhosale, P. N. Efficient improvement of photoelectrochemical performance of CdSe thin film deposited via arrested precipitation technique. Mater. Lett. 164, 52–55. https://doi.org/10.1016/j.matlet.2015.10.099 (2016). (PMID: 10.1016/j.matlet.2015.10.099)
Najm, A. S. et al. Effect of chenodeoxycholic acid on the performance of dye-sensitized solar cells utilizing pinang palm (Areca catechu) dye. Sains Malay. 49(12), 2971–2982 (2020).
Dongale, T. D. et al. Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route. Mater. Sci. Semicond. Process. 40, 523–526. https://doi.org/10.1016/j.mssp.2015.07.004 (2015). (PMID: 10.1016/j.mssp.2015.07.004)
Khot, K. V. et al. Synthesis, characterization and photoelectrochemical properties of PbS sensitized vertically aligned ZnO nanorods: modified aqueous route. J. Mater. Sci. Mater. Electron. 26(9), 6897–6906. https://doi.org/10.1007/s10854-015-3307-6 (2015). (PMID: 10.1007/s10854-015-3307-6)
Najm, A. S. et al. An in-depth analysis of nucleation and growth mechanism of CdS thin film synthesized by chemical bath deposition (CBD) technique. Sci. Rep. 12(1), 1–20. https://doi.org/10.1038/s41598-022-19340-z (2022). (PMID: 10.1038/s41598-022-19340-z)
Najm, A. S., Naeem, H. S., Alabboodi, K. O. & Hasbullah, S. A. New systematic study approach of green synthesis CdS thin film via Salvia dye. Sci. Rep. 12(1), 1–21. https://doi.org/10.1038/s41598-022-16733-y (2022). (PMID: 10.1038/s41598-022-16733-y)
Moreno-regino, V. D., Castañeda-de-la-hoya, F. M., Torres-castanedo, C. G. & Márquez-marín, J. Structural, optical, electrical and morphological properties of CdS fi lms deposited by CBD varying the complexing agent concentration. Results Phys. 13, 102238. https://doi.org/10.1016/j.rinp.2019.102238 (2019). (PMID: 10.1016/j.rinp.2019.102238)
Abdulghani, Z. R. et al. Numerical simulation of quantum dots as a buffer layer in CIGS solar cells: A comparative study. Sci. Rep. 12(1), 1–16. https://doi.org/10.1038/s41598-022-12234-0 (2022). (PMID: 10.1038/s41598-022-12234-0)
Zellagui, R., Dehdouh, H., Adnane, M., Akhtar, M. S. & Saeed, M. A. CdxZn1−xS thin films deposited by chemical bath deposition (CBD) method. Optik 207(1), 164377 (2020). (PMID: 10.1016/j.ijleo.2020.164377)
Fernández-Pérez, A. et al. Characterization of chemically-deposited aluminum-doped CdS thin films with post-deposition thermal annealing. Thin Solid Films 623, 127–134. https://doi.org/10.1016/j.tsf.2016.12.036 (2017). (PMID: 10.1016/j.tsf.2016.12.036)
Becerril-Silva, R., Portillo-Moreno, O., Lozada-Morales, R., Fernandez-Munoz, J. L. & Zelaya-Angel, O. CdS: In thin films grown by chemical bath. J. Non-oxide Glass. 9(1), 1–7 (2017).
Yan, L. L., Wang, X. B., Liu, W. K. & Li, X. J. Effect of boron doping on the rectification effect and photovoltaic performance of CdS/Si heterostructure based on Si nanoporous pillar array. J. Phys. D. 48, 265101. https://doi.org/10.1088/0022-3727/48/26/265101 (2015). (PMID: 10.1088/0022-3727/48/26/265101)
Salh, A. et al. Effect of gallium doping on CdS thin film properties and corresponding Cu(InGa)Se2/CdS: Ga solar cell performance. Thin Solid Films 660, 207–212. https://doi.org/10.1016/j.tsf.2018.06.014 (2018). (PMID: 10.1016/j.tsf.2018.06.014)
Campisi, S., Schiavoni, M., Chan-thaw, C. E. & Villa, A. Untangling the role of the capping agent in nanocatalysis: Recent advances and perspectives. Catalysts 6(12), 1–21. https://doi.org/10.3390/catal6120185 (2016). (PMID: 10.3390/catal6120185)
Shasha, Q. et al. An enhanced CdS / TiO2 photocatalyst with high stability and activity: Effect of mesoporous substrate and bifunctional linking molecule. J. Mater. Chem. 21(13), 4945–4952. https://doi.org/10.1039/c0jm03508d (2011). (PMID: 10.1039/c0jm03508d)
Hussein, M., Roby, H., Atef, M., Selim, K. A. & Ibrahim, K. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crop. Prod. 43, 827–831. https://doi.org/10.1016/j.indcrop.2012.08.029 (2013). (PMID: 10.1016/j.indcrop.2012.08.029)
Khare, R., Upmanyu, N., Shukla, T., Jain, V. & Jha, M. Compendium of Salvia officinalis: An overview. Curr. Tradit. Med. 6(4), 300–311 (2020). (PMID: 10.2174/2215083805666190723095043)
Pan, Z. et al. Highly efficient inverted type-I CdS/CdSe core/shell structure. ACS Nano 6(5), 3982–3991 (2012). (PMID: 10.1021/nn300278z22509717)
Najm, A. S. et al. Impact of cadmium salt concentration on CdS nanoparticles synthesized by chemical precipitation method. Chalcogenide Lett. 17(11), 537–547 (2020). (PMID: 10.15251/CL.2020.1711.537)
Ravichandran, K. & Philominathan, P. Comparative study on structural and optical properties of CdS films fabricated by three different low-cost techniques. Appl. Surf. Sci. 255, 5736–5741. https://doi.org/10.1016/j.apsusc.2008.12.076 (2009). (PMID: 10.1016/j.apsusc.2008.12.076)
Azizian-kalandaragh, Y. & Aydemir, U. Dielectric and optical properties of CdS–polymer nanocomposites prepared by the successive ionic layer adsorption and reaction (SILAR) method. J. Electron. Mater. 43(4), 1226–1231. https://doi.org/10.1007/s11664-014-2998-4 (2014). (PMID: 10.1007/s11664-014-2998-4)
Moghaddam, M., Naderi, N., Hosseinifard, M. & Kazemzadeh, A. Improved optical and structural properties of cadmium sulfide nanostructures for optoelectronic applications. Ceram. Int. 46(6), 7388–7395. https://doi.org/10.1016/j.ceramint.2019.11.234 (2020). (PMID: 10.1016/j.ceramint.2019.11.234)
Bashar, M. S. et al. Effect of rapid thermal annealing on structural and optical properties of ZnS thin films fabricated by RF magnetron sputtering technique. J. Theor. Appl. Phys. 14, 53–63 (2019). (PMID: 10.1007/s40094-019-00361-5)
Jiménez-hernández, L., Estévez-hernández, O., Hernández-sánchez, M. & Díaz, J. A. 3-mercaptopropionic acid surface modification of Cu-doped ZnO nanoparticles: Their properties and peroxidase conjugation. Colloids Surf. A. 489, 351–359 (2016). (PMID: 10.1016/j.colsurfa.2015.11.010)
Najm, A. S. et al. Areca catechu extracted natural new sensitizer for dye-sensitized solar cell: Performance evaluation. J. Mater. Sci. Mater. Electron. 31(4), 3564–3575. https://doi.org/10.1007/s10854-020-02905-x (2020). (PMID: 10.1007/s10854-020-02905-x)
Hassan, H. C., Abidin, Z. H. Z., Chowdhury, F. I. & Arof, A. K. A high efficiency chlorophyll sensitized solar cell with quasi solid PVA based electrolyte. Int. J. Photoenergy https://doi.org/10.1155/2016/3685210 (2016). (PMID: 10.1155/2016/3685210)
Najm, A. S., Moria, H. & Ludin, N. A. Areca catechu as photovoltaic sensitizer for dye-sensitized solar cell (DSSC). Biointerface Res. Appl. Chem. 10(3), 5636–5639 (2020). (PMID: 10.33263/BRIAC103.636639)
Mahmoud, W. E., Al-Marzouki, F., Al-Ameer, S. & Al-Hazmi, F. Synthesis and characterization of one-dimensional vertically aligned Sb-doped ZnO nanowires research papers. J. Appl. Crystallogr. 45(2), 182–185. https://doi.org/10.1107/S0021889812001665 (2012). (PMID: 10.1107/S0021889812001665)
Cruz, J. S., Pérez, R. C., Delgado, G. T. & Angel, O. Z. CdS thin films doped with metal-organic salts using chemical bath deposition. Thin Solid Films 518(7), 1791–1795. https://doi.org/10.1016/j.tsf.2009.09.034 (2010). (PMID: 10.1016/j.tsf.2009.09.034)
Taur, V. S., Joshi, R. A. & Sharma, R. Annealing-induced modifications in physicochemical and optoelectronic properties of Ag-doped nanostructured CdS thin films. Int. J. Photoenergy https://doi.org/10.1155/2012/264027 (2012). (PMID: 10.1155/2012/264027)
Suryavanshi, P. S. & Panchal, C. J. Investigation of urbach energy of CdS thin films as buffer layer for CIGS thin film solar cell. J. NANO-Electron. Phys. 10(2), 5–9. https://doi.org/10.21272/jnep.10(2).02012 (2018). (PMID: 10.21272/jnep.10(2).02012)
Melsheimer, J. & Ziegler, D. Band gap energy and urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide * The spraying method was used to prepare amorphous and partially crystalline tin dioxides at temperatures from 340 to 410 °C and polycrystalline. Thin Solid Films 129, 35–47 (1985). (PMID: 10.1016/0040-6090(85)90092-6)
Metin, H. & Esen, R. Annealing effects on optical and crystallographic properties of CBD grown CdS films. Semicond. Sci. Technol. 647(3), 647–654 (2003). (PMID: 10.1088/0268-1242/18/7/308)
Najm, A. S. et al. Mechanism and principle of doping: Realizing of silver incorporation in CdS thin film via doping concentration effect. RSC Adv. 12(46), 29613–29626. https://doi.org/10.1039/d2ra04790j (2022). (PMID: 10.1039/d2ra04790j363211039574645)
Bel, N. et al. Effect of surface on the optical structural and thermal properties of organically capped CdS nanoparticles. J. Phys. Chem. Solids 75(8), 936–944. https://doi.org/10.1016/j.jpcs.2014.03.007 (2014). (PMID: 10.1016/j.jpcs.2014.03.007)
Jamal, M. S. et al. Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results Phys. 14, 102360. https://doi.org/10.1016/j.rinp.2019.102360 (2019). (PMID: 10.1016/j.rinp.2019.102360)
Najm, A. S. et al. Mechanism of chemical bath deposition of CdS thin films: Influence of sulphur precursor concentration on microstructural and optoelectronic characterizations. Coatings https://doi.org/10.3390/coatings12101400 (2022). (PMID: 10.3390/coatings12101400)
Yilmaz, S., Tomakin, M., Unverdi, A. & Aboghalon, A. A study on hydrothermal grown CdS nanospheres: Effects of Cd/S molar ratio. J. Sci. 32(4), 1271–1281. https://doi.org/10.35378/gujs.513525 (2019). (PMID: 10.35378/gujs.513525)
Najm, A. S., Ahmad Ludin, N., Jaber, I., Hamid, N. H. & Salah Naeem, H. Influence of the concentration of chenodeoxycholic acid on the performance of the N719 dye. Inorg. Chim. Acta 2022, 120776. https://doi.org/10.1016/j.ica.2021.120776 (2022). (PMID: 10.1016/j.ica.2021.120776)
Sengupta, S., Pateria, M. A. & Deshmukh, K. Structural and morphological studies of Sm doped and un-doped CuInS 2 nanocrystalline films with chalcopyrite-wurtzite polytypism structure. Optoelectron. Adv. Mater. Rapid Commun. 12(7–8), 475–479 (2018).
Azmi, N. et al. A comprehensive study on the effects of alternative sulphur precursor on the material properties of chemical bath deposited CdS thin films. Ceram. Int. 46, 18716–18724. https://doi.org/10.1016/j.ceramint.2020.04.186 (2020). (PMID: 10.1016/j.ceramint.2020.04.186)
Shaikh, S. S., Shkir, M. & Masumdar, E. U. Facile fabrication and characterization of modified spray deposited cadmium sulphide thin films. Phys. B Condens. Matter 571, 64–70. https://doi.org/10.1016/j.physb.2019.06.051 (2019). (PMID: 10.1016/j.physb.2019.06.051)
Ashok, A. et al. Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications. J. Mater. Sci. Mater. Electron. 14, 1–20. https://doi.org/10.1007/s10854-020-03024-3 (2020). (PMID: 10.1007/s10854-020-03024-3)
Balu, T. S. V. S. N. A. R. & Usharani, K. Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine. J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-015-3865-7 (2015). (PMID: 10.1007/s10854-015-3865-7)
Khan, Z. R., Shkir, M., Ganesh, V. & Alfaify, S. Linear and nonlinear optics of CBD grown nanocrystalline F doped CdS thin films for optoelectronic applications: An effect of thickness. J. Electron. Mater. 47(9), 5386–5395. https://doi.org/10.1007/s11664-018-6437-9 (2018). (PMID: 10.1007/s11664-018-6437-9)
Regragui, M. et al. Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films. Thin Solid Films 358(1–2), 40–45 (2000). (PMID: 10.1016/S0040-6090(99)00682-3)
Donguk, K. et al. Optical and structural properties of sputtered CdS films for thin film solar cell applications. Mater. Res. Bull. 69, 78–83. https://doi.org/10.1016/j.materresbull.2015.03.024 (2015). (PMID: 10.1016/j.materresbull.2015.03.024)
Diaz-reyes, J., Contreras-rascón, J. I., Díaz-, J., Linares-avilés, M. E. & Galván-, M. Characterization of CBD–CdS nanocrystals doped with Co 2+ . J. Mater. Sci. Mater. Electron. 29(23), 19748–19756. https://doi.org/10.1007/s10854-018-0100-3 (2018). (PMID: 10.1007/s10854-018-0100-3)
Akter, F., Mohammad, J. & Rashid, J. Simulation study to find suitable dopants of CdS buffer layer for CZTS solar cell. J. Theor. Appl. Phys. 14(1), 75–84. https://doi.org/10.1007/s40094-019-00363-3 (2020). (PMID: 10.1007/s40094-019-00363-3)
Kanevce, A. et al. The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25 % efficient CdTe solar cells. J. Appl. Phys. 121(21), 1–16 (2017). (PMID: 10.1063/1.4984320)
تواريخ الأحداث: Date Created: 20230918 Latest Revision: 20230922
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10507019
DOI: 10.1038/s41598-023-42641-w
PMID: 37723193
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-023-42641-w