دورية أكاديمية

Post-stroke functional assessments based on rehabilitation games and their correlation with clinical scales: A scoping review.

التفاصيل البيبلوغرافية
العنوان: Post-stroke functional assessments based on rehabilitation games and their correlation with clinical scales: A scoping review.
المؤلفون: Tannus J; Faculty of Electrical Engineering, Assistive Technologies Group, Federal University of Uberlandia, Av Joao Naves de Avila, 2121 -Bloco 1A, Uberlandia, Brazil. julia.tannus95@gmail.com., Naves ELM; Faculty of Electrical Engineering, Assistive Technologies Group, Federal University of Uberlandia, Av Joao Naves de Avila, 2121 -Bloco 1A, Uberlandia, Brazil., Morere Y; LCOMS Laboratory, University of Lorraine, Metz, France.
المصدر: Medical & biological engineering & computing [Med Biol Eng Comput] 2024 Jan; Vol. 62 (1), pp. 47-60. Date of Electronic Publication: 2023 Sep 19.
نوع المنشور: Systematic Review; Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 7704869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1741-0444 (Electronic) Linking ISSN: 01400118 NLM ISO Abbreviation: Med Biol Eng Comput Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Springer
Original Publication: Stevenage, Eng., Peregrinus.
مواضيع طبية MeSH: Stroke Rehabilitation*/methods , Video Games* , Stroke*, Adult ; Humans ; Activities of Daily Living ; Physical Therapy Modalities
مستخلص: Considering that stroke is one of the main causes of adult impairment and the growing interest in Virtual Reality (VR) as a potential assessment and treatment tool for the rehabilitation of stroke patients, a scoping review was conducted to check whether user's motion data obtained from VR games and simulations can be clinically valid. This was done by reviewing studies on parameters for assessing the functional skills and rehabilitation progress using data from VR games or simulations. Then, identifying the most widely used and validated parameters for the quantification of motor ability in a virtual environment and suggesting challenges for future research. For the validation of the parameters obtained from the VR software, only the studies that correlated them with traditional physiotherapy scales were considered. In December 2022, a search of the following databases was performed: IEEE Xplore, ACM Digital Library, PubMed and PEDro. The selection criteria were studies published in English during the past 10 years, with upper-limb based interaction and tested on more than one stroke patient. A total of 14 were included in the PRISMA scoping review. Favorable results were found in 12 of the 14 studies, which reported positive or strongly positive correlations with clinical scales, even when diverse variables were used. In-depth research using a larger sample size is needed. The results demonstrate that data collected while playing a virtual serious game has the potential to be clinically valid, after conducting high-quality supportive studies with controlled variables, potentially helping the practice in terms of time and resources.
(© 2023. International Federation for Medical and Biological Engineering.)
References: Tsao CW, Aday AW, Almarzooq ZI et al (2022) Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 145:e153–e639. (PMID: 10.1161/CIR.000000000000105235078371)
Lohse KR, Hilderman CGE, Cheung KL et al (2014) Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One 9:e93318. (PMID: 10.1371/journal.pone.0093318246818263969329)
Kiper P, Agostini M, Luque-Moreno C et al (2014) Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res Int 2014:752128. (PMID: 10.1155/2014/752128247450243972918)
Murie-Fernández M, Irimia P, Martínez-Vila E et al (2010) Neuro-rehabilitation after stroke. Neurologia 25:189–196.
Broeren J, Claesson L, Goude D et al (2008) Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games. Cerebrovasc Dis 26:289–296.
Merchant Z, Goetz ET, Cifuentes L et al (2014) Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis. Comput Educ [Internet] 70:29–40. Available from: https://www.sciencedirect.com/science/article/pii/S0360131513002108.
Norouzi-Gheidari N, Hernandez A, Archambault PS et al (2020) Feasibility, Safety and Efficacy of a Virtual Reality Exergame System to Supplement Upper Extremity Rehabilitation Post-Stroke: A Pilot Randomized Clinical Trial and Proof of Principle. Int J Environ Res Public Health 17.
Pourmand A, Davis S, Marchak A et al (2018) Virtual reality as a clinical tool for pain management. Curr Pain Headache Rep 22:1–6. (PMID: 10.1007/s11916-018-0708-2)
Yeh S-C, Chen Y-C, Tsai C-F et al (2012) An innovative virtual reality system for mild cognitive impairment: Diagnosis and evaluation. 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, pp 23–27. https://doi.org/10.1109/IECBES.2012.6498023.
Barteit S, Lanfermann L, Bärnighausen T et al (2021) Augmented, mixed, and virtual reality-based head-mounted devices for medical education: systematic review. JMIR Serious Games 9:e29080. (PMID: 10.2196/29080342556688299342)
Pourmand A, Davis S, Lee D et al (2017) Emerging Utility of Virtual Reality as a Multidisciplinary Tool in Clinical Medicine. Games Health J 6:263–270. (PMID: 10.1089/g4h.2017.004628759254)
Park Y-H, Lee C-H, Lee B-H (2013) Clinical usefulness of the virtual reality-based postural control training on the gait ability in patients with stroke. J Exerc Rehabil 9:489–494. (PMID: 10.12965/jer.130066242828103836554)
Weber LM, Nilsen DM, Gillen G et al (2019) Immersive virtual reality mirror therapy for upper limb recovery following stroke: A pilot study. Am J Phys Med Rehabil 98:783. (PMID: 10.1097/PHM.0000000000001190309647526697203)
Ahmad MA, Singh DKA, Mohd Nordin NA et al (2019) Virtual reality games as an adjunct in improving upper limb function and general health among stroke survivors. Int J Environ Res Public Health 16(24):5144. https://doi.org/10.3390/ijerph16245144.
Kim W-S, Cho S, Baek D et al (2016) Upper Extremity Functional Evaluation by Fugl-Meyer Assessment Scoring Using Depth-Sensing Camera in Hemiplegic Stroke Patients. PLoS One 11:e0158640. (PMID: 10.1371/journal.pone.0158640273675184930182)
Adams RJ, Ellington AL, Armstead K et al (2019) Upper Extremity Function Assessment Using a Glove Orthosis and Virtual Reality System. OTJR (Thorofare N J) 39:81–89. (PMID: 30885076)
Rodriguez-de-Pablo C, Balasubramanian S, Savic A et al (2015) Validating ArmAssist Assessment as outcome measure in upper-limb post-stroke telerehabilitation. Annu Int Conf IEEE Eng Med Biol Soc 2015:4623–4626. https://doi.org/10.1109/EMBC.2015.7319424.
Henderson A, Korner-Bitensky N, Levin M (2007) Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil 14:52–61. (PMID: 10.1310/tsr1402-5217517575)
Kwon J-S, Park M-J, Yoon I-J et al (2012) Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation 31:379–385. (PMID: 10.3233/NRE-2012-0080723232161)
Laver KE, Lange B, George S et al (2017) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 9:CD008349. https://doi.org/10.1002/14651858.CD008349.pub2.
Fugl-Meyer AR, Jääskö L, Leyman I et al (1975) A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31. (PMID: 10.2340/16501977713311135616)
Wolf SL, Thompson PA, Morris DM et al (2005) The EXCITE Trial: Attributes of the Wolf Motor Function Test in Patients with Subacute Stroke. Neurorehabil Neural Repair [Internet] 19:194–205. Available from: https://doi.org/10.1177/1545968305276663.
Mathiowetz V, Volland G, Kashman N et al (1985) Adult Norms for the Box and Block Test of Manual Dexterity. Am J Occup Ther 39:386–391. (PMID: 10.5014/ajot.39.6.3863160243)
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10:89.  https://doi.org/10.1186/s13643-021-01626-4.
Astrakas LG, De Novi G, Ottensmeyer MP et al (2021) Improving motor function after chronic stroke by interactive gaming with a redesigned MR-compatible hand training device. Exp Ther Med 21:245. (PMID: 10.3892/etm.2021.9676336038537851602)
Lee S-H, Cui J, Liu L et al (2021) An Evidence-Based Intelligent Method for Upper-Limb Motor Assessment via a VR Training System on Stroke Rehabilitation. IEEE Access 9:65871–65881. (PMID: 10.1109/ACCESS.2021.3075778)
Jung H-T, Daneault J-F, Lee H et al (2019) Remote Assessment of Cognitive Impairment Level Based on Serious Mobile Game Performance: An Initial Proof of Concept. IEEE J Biomed Heal Inform 23:1269–1277. (PMID: 10.1109/JBHI.2019.2893897)
Bai J, Song A (2019) Development of a Novel Home Based Multi-Scene Upper Limb Rehabilitation Training and Evaluation System for Post-Stroke Patients. IEEE Access 7:9667–9677. (PMID: 10.1109/ACCESS.2019.2891606)
Jung H-T, Lee H, Kim K et al (2018) Estimating Mini Mental State Examination Scores using Game-Specific Performance Values: A Preliminary Study. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2018:1518–1521.
Lin B, Chen J, Hsu H (2018) Novel Upper-Limb Rehabilitation System Based on Attention Technology for Post-Stroke Patients: A Preliminary Study. IEEE Access 6:2720–2731. (PMID: 10.1109/ACCESS.2017.2785122)
Hesam-Shariati N, Trinh T, Thompson-Butel AG et al (2017) A Longitudinal Electromyography Study of Complex Movements in Poststroke Therapy. 2: Changes in Coordinated Muscle Activation. Front Neurol 8:277.
Cidota MA, Bank PJM, Ouwehand PW et al (2017) Assessing Upper Extremity Motor Dysfunction Using an Augmented Reality Game. 2017 IEEE Int Symp Mix Augment Real. p. 144–154.
Chen C, Lee S, Wang W et al (2017) The changes of improvement-related motor kinetics after virtual reality based rehabilitation. 2017 Int Conf Appl Syst Innov. p. 683–685.
Friedman N, Chan V, Reinkensmeyer AN et al (2014) Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil 11:76. (PMID: 10.1186/1743-0003-11-76248850764022276)
Khademi M, Mousavi Hondori H, McKenzie A et al (2014) Free-Hand Interaction with Leap Motion Controller for Stroke Rehabilitation. CHI ’14 Ext Abstr Hum Factors Comput Syst [Internet]. Association for Computing Machinery, New York, NY, USA. p. 1663–1668. Available from: https://doi.org/10.1145/2559206.2581203.
Serradilla J, Shi JQ, Cheng Y et al (2014) Automatic assessment of upper limb function during play of the action video game, circus challenge: validity and sensitivity to change. 2014 IEEE 3nd Int Conf Serious Games Appl Heal. 1–7.
Friedman N, Chan V, Zondervan D et al (2011) MusicGlove: motivating and quantifying hand movement rehabilitation by using functional grips to play music. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2011:2359–2363.
Wolf SL, Catlin PA, Ellis M et al (2001) Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke 32:1635–1639. (PMID: 10.1161/01.STR.32.7.163511441212)
Yozbatiran N, Der-Yeghiaian L, Cramer SC (2007) A standardized approach to performing the action research arm test. Neurorehabil Neural Repair 22(1):78–90.  https://doi.org/10.1177/1545968307305353.
Gladstone DJ, Danells CJ, Black SE (2002) The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair 16:232–240. (PMID: 10.1177/15459680240110517112234086)
Duncan PW, Propst M, Nelson SG (1983) Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 63:1606–1610. (PMID: 10.1093/ptj/63.10.16066622535)
McDonnell M (2008) Action research arm test. Aust J Physiother 54:220. (PMID: 10.1016/S0004-9514(08)70034-518833688)
Desrosiers J, Bravo G, Hébert R et al (1994) Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil 75:751–755. (PMID: 10.1016/0003-9993(94)90130-98024419)
Santisteban L, Térémetz M, Bleton JP et al (2016) Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review. PLoS One 11:e0154792. (PMID: 10.1371/journal.pone.0154792271528534859525)
Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198.
Barreca S, Gowland CK, Stratford P et al (2004) Development of the Chedoke Arm and Hand Activity Inventory: theoretical constructs, item generation, and selection. Top Stroke Rehabil 11:31–42. (PMID: 10.1310/JU8P-UVK6-68VW-CF3W15592988)
Taub E, Miller NE, Novack TA et al (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74:347–354. (PMID: 8466415)
Desrosiers J, Hébert R, Bravo G et al (1995) Upper extremity performance test for the elderly (TEMPA): normative data and correlates with sensorimotor parameters. Test d’Evaluation des Membres Supérieurs de Personnes Agées. Arch Phys Med Rehabil 76:1125–1129.
Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67:206–207. (PMID: 10.1093/ptj/67.2.2063809245)
Wang Q, Markopoulos P, Yu B et al (2017) Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil 14:20. (PMID: 10.1186/s12984-017-0229-y282842285346195)
Microsoft (2021) Azure Kinect DK [Internet]. [cited 2021 Jul 2]. Available from: https://www.microsoft.com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot:overviewtab.
Ultraleap (2023) Leap Motion Controller [Internet]. [cited 2023 Mar 13]. Available from: https://www.ultraleap.com/product/leap-motion-controller/.
Adamovich SV, Fluet GG, Tunik E et al (2009) Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25:29–44. (PMID: 10.3233/NRE-2009-0497197136172819065)
Alex M, Chen C, Wunsche BC (2017) A review of sensor devices in stroke rehabilitation. 2017 International Conference on Image and Vision Computing New Zealand (IVCNZ), Christchurch, New Zealand, pp 1–6. https://doi.org/10.1109/IVCNZ.2017.8402480.
Thomson K, Pollock A, Bugge C et al (2016) Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice. Disabil Rehabil Assist Technol 11:454–461. (PMID: 25634339)
Ruiz-González L, Lucena-Antón D, Salazar A et al (2019) Physical therapy in Down syndrome: systematic review and meta-analysis. J Intellect Disabil Res 63:1041–1067. (PMID: 10.1111/jir.1260630788876)
Lin J, Kelleher CL, Engsberg JR (2013) Developing Home-Based Virtual Reality Therapy Interventions. Games Health J 2:34–38. (PMID: 10.1089/g4h.2012.003326196552)
Pietrzak E, Pullman S, McGuire A (2014) Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review. Games Health J 3:202–214. (PMID: 10.1089/g4h.2014.001326192369)
معلومات مُعتمدة: 001 Coordination for the Improvement of Higher Education Personnel
فهرسة مساهمة: Keywords: Games; Rehabilitation; Scoping review; Stroke; Virtual reality
تواريخ الأحداث: Date Created: 20230918 Date Completed: 20240103 Latest Revision: 20240320
رمز التحديث: 20240320
DOI: 10.1007/s11517-023-02933-9
PMID: 37723382
قاعدة البيانات: MEDLINE
الوصف
تدمد:1741-0444
DOI:10.1007/s11517-023-02933-9