دورية أكاديمية

Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4).

التفاصيل البيبلوغرافية
العنوان: Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4).
المؤلفون: Dar NJ; School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA. nawabdar@gmail.com., John U; School of Studies in Neuroscience, Jiwaji University, Gwalior, India.; School of Studies in Zoology, Jiwaji University, Gwalior, India., Bano N; Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India., Khan S; Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India., Bhat SA; Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India. sabhat1@myamu.ac.in.
المصدر: Molecular neurobiology [Mol Neurobiol] 2024 Mar; Vol. 61 (3), pp. 1507-1526. Date of Electronic Publication: 2023 Sep 19.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Clifton, NJ : Humana Press, c1987-
مواضيع طبية MeSH: Ferroptosis* , Neurodegenerative Diseases*, Humans ; Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism ; Cell Death ; Oxidation-Reduction ; Glutathione Peroxidase/metabolism ; Glutathione/metabolism ; Lipid Peroxidation
مستخلص: Oxytosis/ferroptosis is an iron-dependent oxidative form of cell death triggered by lethal accumulation of phospholipid hydroperoxides (PLOOHs) in membranes. Failure of the intricate PLOOH repair system is a principle cause of ferroptotic cell death. Glutathione peroxidase 4 (GPX4) is distinctly vital for converting PLOOHs in membranes to non-toxic alcohols. As such, GPX4 is known as the master regulator of oxytosis/ferroptosis. Ferroptosis has been implicated in a number of disorders such as neurodegenerative diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), etc.), ischemia/reperfusion injury, and kidney degeneration. Reduced function of GPX4 is frequently observed in degenerative disorders. In this study, we examine how diminished GPX4 function may be a critical event in triggering oxytosis/ferroptosis to perpetuate or initiate the neurodegenerative diseases and assess the possible therapeutic importance of oxytosis/ferroptosis in neurodegenerative disorders. These discoveries are important for advancing our understanding of neurodegenerative diseases because oxytosis/ferroptosis may provide a new target to slow the course of the disease.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021. (PMID: 10.1016/j.cell.2017.09.021289855605685180)
Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758. https://doi.org/10.1016/j.cell.2011.10.033. (PMID: 10.1016/j.cell.2011.10.033220788764511103)
Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462. https://doi.org/10.1126/science.7878464. (PMID: 10.1126/science.78784647878464)
Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. https://doi.org/10.1038/nrmicro2070. (PMID: 10.1038/nrmicro2070191481782910423)
Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. CurrOpin Cell Biol 22(2):263–268. https://doi.org/10.1016/j.ceb.2009.12.003. (PMID: 10.1016/j.ceb.2009.12.003)
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042. (PMID: 10.1016/j.cell.2012.03.042226329703367386)
Angeli JPF, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191. https://doi.org/10.1038/ncb3064. (PMID: 10.1038/ncb30644894846)
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158. (PMID: 10.1038/cdd.2015.158267944435072448)
Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014. (PMID: 10.1016/j.tcb.2015.10.01426653790)
Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S (2017) Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis. Free Radic Biol Med 108:610–626. https://doi.org/10.1016/j.freeradbiomed.2017.04.024. (PMID: 10.1016/j.freeradbiomed.2017.04.02428433662)
Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S (2017) Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem Int 104:34–48. https://doi.org/10.1016/j.neuint.2017.01.004. (PMID: 10.1016/j.neuint.2017.01.00428082232)
Chen L, Na R, McLane KD, Thompson CS, Gao J, Wang X et al (2021) Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-92369-8. (PMID: 10.1038/s41598-021-92369-8)
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C et al (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12(1):1–16. https://doi.org/10.1186/s13045-019-0720-y. (PMID: 10.1186/s13045-019-0720-y)
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ et al (2007) RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):865–869. https://doi.org/10.1038/nature05859. (PMID: 10.1038/nature05859)
Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245. https://doi.org/10.1016/j.chembiol.2008.02.010. (PMID: 10.1016/j.chembiol.2008.02.010183557232683762)
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4. (PMID: 10.1038/s41418-017-0012-4293624795864239)
Chen L, Hambright WS, Na R, Ran Q (2015) Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 290(47):28097–28106. https://doi.org/10.1074/jbc.M115.680090. (PMID: 10.1074/jbc.M115.680090264000844653669)
Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17. https://doi.org/10.1016/j.redox.2017.01.021. (PMID: 10.1016/j.redox.2017.01.021282125255312549)
Li J, Jia B, Cheng Y, Song Y, Li Q, Luo C (2022) Targeting molecular mediators of ferroptosis and oxidative stress for neurological disorders. Ed H Birla Oxid Med Cell Longev 2022:1–14. https://doi.org/10.1155/2022/3999083. (PMID: 10.1155/2022/3999083)
Chen D, Chu B, Yang X, Liu Z, Jin Y, Kon N, Rabadan R, Jiang X et al (2021) iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 12(1):3644. https://doi.org/10.1038/s41467-021-23902-6. (PMID: 10.1038/s41467-021-23902-6341311398206155)
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90. https://doi.org/10.1038/nchembio.2238. (PMID: 10.1038/nchembio.223827842066)
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M et al (2017 Jan) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98. https://doi.org/10.1038/nchembio.2239. (PMID: 10.1038/nchembio.223927842070)
Yuan H, Li X, Zhang X, Kang R, Tang D (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478(3):1338–1343. https://doi.org/10.1016/j.bbrc.2016.08.124. (PMID: 10.1016/j.bbrc.2016.08.12427565726)
Gao S, Zhou L, Lu J, Fang Y, Wu H, Xu W, Pan Y et al (2022) Cepharanthine attenuates early brain injury after subarachnoid hemorrhage in mice via inhibiting 15-lipoxygenase-1-mediated microglia and endothelial cell ferroptosis. Oxidative Med Cell Longev:4295208. https://doi.org/10.1155/2022/4295208.
Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081. (PMID: 10.1080/15548627.2020.181091832804006)
Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS et al (2021) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628–641.e26. https://doi.org/10.1016/j.cell.2017.09.044. (PMID: 10.1016/j.cell.2017.09.044)
Li K, Wang M, Huang Z-H, Wang M, Sun W-Y, Kurihara H, Huang R-T, Wang R et al (2023) ALOX5 inhibition protects against dopaminergic neurons undergoing ferroptosis. Pharmacol Res 193:106779. https://doi.org/10.1016/j.phrs.2023.106779. (PMID: 10.1016/j.phrs.2023.10677937121496)
Yan H, Zou T, Tuo Q, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6(1):49. https://doi.org/10.1038/s41392-020-00428-9. (PMID: 10.1038/s41392-020-00428-9335364137858612)
Chidawanyika T, Mark KMK, Supattapone S (2020) A genome-wide CRISPR/Cas9 screen reveals that riboflavin regulates hydrogen peroxide entry into HAP1 cells. MBio 11(4). https://doi.org/10.1128/mBio.01704-20.
Deng L, He S, Guo N, Tian W, Zhang W, Luo L (2023) Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm Res 72(2):281–299. https://doi.org/10.1007/s00011-022-01672-1. (PMID: 10.1007/s00011-022-01672-136536250)
Wang Y, Wu S, Li Q, Sun H, Wang H (2023) Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv Sci. https://doi.org/10.1002/advs.202300325.
Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ, Pichler M (2022) Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death Differ 29(6):1094–1106. https://doi.org/10.1038/s41418-022-00998-x. (PMID: 10.1038/s41418-022-00998-x354224929177660)
Ryan SK, Zelic M, Han Y, Teeple E, Chen L, Sadeghi M, Shankara S, Guo L et al (2023) Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci 26(1):12–26. https://doi.org/10.1038/s41593-022-01221-3. (PMID: 10.1038/s41593-022-01221-336536241)
Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, Barros P et al (2020) Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci 21(22):8765. https://doi.org/10.3390/ijms21228765. (PMID: 10.3390/ijms21228765332334967699575)
Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A et al (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 368:85–89. (PMID: 10.1126/science.aaw9872322419477681911)
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. (PMID: 10.1038/s41586-019-1707-031634899)
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692. (PMID: 10.1038/s41586-019-1705-2316349006883167)
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J et al (2021) Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci 17:2703–2717. (PMID: 10.7150/ijbs.59404343452028326123)
Schipper HM, Song W, Tavitian A, Cressatti M (2019) The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 172:40–70. (PMID: 10.1016/j.pneurobio.2018.06.00830009872)
Campbell MR, Karaca M, Adamski KN, Chorley BN, Wang X, Bell DA (2013) Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxidative Med Cell Longev 2013:120305. (PMID: 10.1155/2013/120305)
Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. (PMID: 10.1016/j.redox.2019.101107306920386859567)
Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family–an evolutionary overview. FEBS J 275(15):3959–3970. https://doi.org/10.1111/j.1742-4658.2008.06542.x. (PMID: 10.1111/j.1742-4658.2008.06542.x18616466)
Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta BBA-Gen Subj 839(1):62–70. https://doi.org/10.1016/0304-4165(85)90182-5. (PMID: 10.1016/0304-4165(85)90182-5)
Chu F-F, de Silva HR, Esworthy RS, Boteva KK, Walters CE, Roses A et al (1996) Polymorphism and chromosomal localization of the GI-form of human glutathione peroxidase (GPX2) on 14q24. 1 by insitu hybridization. Genomics 32(2):272–276. https://doi.org/10.1006/geno.1996.0115. (PMID: 10.1006/geno.1996.01158833155)
Stoytcheva ZR, Berry MJ (2009) Transcriptional regulation of mammalian selenoprotein expression. Biochim Biophys Acta BBA-Gen Subj 1790(11):1429–1440. https://doi.org/10.1016/j.bbagen.2009.05.012. (PMID: 10.1016/j.bbagen.2009.05.012)
Brigelius-Flohe R, Aumann K-D, Blöcker H, Gross G, Kiess M, Klöppel KD et al (1994) Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. J Biol Chem 269(10):7342–7348. (PMID: 10.1016/S0021-9258(17)37290-38125951)
Pushpa-Rekha TR, Burdsall AL, Oleksa LM, Chisolm GM, Driscoll DM (1995) Rat phospholipid-hydroperoxide glutathione peroxidase: cDNA cloning and identification of multiple transcription and translation start sites. J Biol Chem 270(45):26993–26999. https://doi.org/10.1074/jbc.270.45.26993. (PMID: 10.1074/jbc.270.45.269937592947)
Maiorino M, Scapin M, Ursini F, Biasolo M, Bosello V, Flohé L (2003) Distinct promoters determine alternative transcription of gpx-4 into phospholipid-hydroperoxide glutathione peroxidase variants. J Biol Chem 278(36):34286–34290. https://doi.org/10.1074/jbc.M305327200. (PMID: 10.1074/jbc.M30532720012819198)
Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta BBA-Gen Subj 1830(5):3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020. (PMID: 10.1016/j.bbagen.2012.11.020)
Maiorino M, Roveri A, Ursini F (2018) GPx4: from prevention of lipid peroxidation to spermatogenesis and back. In: Glutathione. CRC Press, pp. 111–127. (PMID: 10.1201/9781351261760-7)
Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J et al (1999) Dual function of the selenoprotein PHGPx during sperm maturation. Science 285(5432):13936. https://doi.org/10.1126/science.285.5432.1393. (PMID: 10.1126/science.285.5432.1393)
Bosello-Travain V, Conrad M, Cozza G, Negro A, Quartesan S, Rossetto M et al (2013) Protein disulfide isomerase and glutathione are alternative substrates in the one Cys catalytic cycle of glutathione peroxidase 7. Biochim Biophys Acta BBA-Gen Subj 1830(6):3846–3857. https://doi.org/10.1016/j.bbagen.2013.02.017. (PMID: 10.1016/j.bbagen.2013.02.017)
Borchert A, Kalms J, Roth SR, Rademacher M, Schmidt A, Holzhutter H-G et al (2018) Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction. Biochim Biophys Acta BBA-Mol Cell Biol Lipids 1863(9):1095–1107. https://doi.org/10.1016/j.bbalip.2018.06.006. (PMID: 10.1016/j.bbalip.2018.06.006)
Tosatto SC, Bosello V, Fogolari F, Mauri P, Roveri A, Toppo S et al (2008) The catalytic site of glutathione peroxidases. Antioxid Redox Signal 10(9):1515–1526. https://doi.org/10.1089/ars.2008.2055. (PMID: 10.1089/ars.2008.205518500926)
Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J et al (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178(1):179–185. https://doi.org/10.1006/dbio.1996.0208. (PMID: 10.1006/dbio.1996.02088812119)
Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG et al (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34(4):496–502. https://doi.org/10.1016/s0891-5849(02)01360-6. (PMID: 10.1016/s0891-5849(02)01360-612566075)
Imai H, Hirao F, Sakamoto T, Sekine K, Mizukura Y, Saito M et al (2003) Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun 305(2):278–286. https://doi.org/10.1016/s0006-291x(03)00734-4. (PMID: 10.1016/s0006-291x(03)00734-412745070)
Shi Z-Z, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ, Habib GM et al (2000) Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci 97(10):5101–5106. https://doi.org/10.1073/pnas.97.10.5101. (PMID: 10.1073/pnas.97.10.51011080577325788)
Chen L et al (2022) Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free Radic Biol Med 180(20):1–12. (PMID: 349989348840972)
Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2(6):1547–1558. https://doi.org/10.1016/0896-6273(89)90043-3. (PMID: 10.1016/0896-6273(89)90043-32576375)
Tan S, Schubert D, Maher P (2001) Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 1(6):497–506. https://doi.org/10.2174/1568026013394741. (PMID: 10.2174/156802601339474111895126)
Lewerenz J, Ates G, Methner A, Conrad M, Maher P (2018) Oxytosis/ferroptosis—(re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system. Front Neurosci 12:214. https://doi.org/10.3389/fnins.2018.00214. (PMID: 10.3389/fnins.2018.00214297317045920049)
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010. (PMID: 10.1016/j.cell.2013.12.010244393854076414)
Bannai S, Kitamura E (1980) Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255(6):2372–2376. (PMID: 10.1016/S0021-9258(19)85901-X7358676)
Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458. https://doi.org/10.1074/jbc.274.17.11455. (PMID: 10.1074/jbc.274.17.1145510206947)
Kobayashi S, Sato M, Kasakoshi T, Tsutsui T, Sugimoto M, Osaki M et al (2015) Cystathionine is a novel substrate of cystine/glutamate transporter: implications for immune function. J Biol Chem 290(14):8778–8788. https://doi.org/10.1074/jbc.M114.625053. (PMID: 10.1074/jbc.M114.625053257131404423669)
Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 133:144–152. https://doi.org/10.1016/j.freeradbiomed.2018.09.014. (PMID: 10.1016/j.freeradbiomed.2018.09.01430219704)
Ingold I, Aichler M, Yefremova E, Roveri A, Buday K, Doll S et al (2015) Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (Gpx4) confers a dominant-negative effect in male fertility. J Biol Chem 290(23):14668–14678. https://doi.org/10.1074/jbc.M115.656363. (PMID: 10.1074/jbc.M115.656363259220764505533)
Brütsch SH, Wang CC, Li L, Stender H, Neziroglu N, Richter C et al (2015) Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice. Antioxid Redox Signal 22(4):281–293. https://doi.org/10.1089/ars.2014.5967. (PMID: 10.1089/ars.2014.596725313597)
Maiorino M, Conrad M, Ursini F (2018) GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal 29(1):61–74. https://doi.org/10.1089/ars.2017.7115. (PMID: 10.1089/ars.2017.711528462584)
Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab 8(3):237–248. https://doi.org/10.1016/j.cmet.2008.07.005. (PMID: 10.1016/j.cmet.2008.07.00518762024)
Dar NJ, Na R, Ran Q (2022) Functional deficits of 5×FAD neural stem cells are ameliorated by glutathione peroxidase 4. Cells. 11(11):1770. https://doi.org/10.3390/cells11111770. (PMID: 10.3390/cells11111770.356814659179411)
Stockwell BR, Jiang X (2020) The chemistry and biology of ferroptosis. Cell Chem Biol 27(4):365–375. https://doi.org/10.1016/j.chembiol.2020.03.013. (PMID: 10.1016/j.chembiol.2020.03.013322944657204503)
Koeberle SC, Kipp AP, Stuppner H, Koeberle A (2023) Ferroptosis-modulating small molecules for targeting drug-resistant cancer: challenges and opportunities in manipulating redox signaling. Med Res Rev 43(3):614–682. https://doi.org/10.1002/med.21933. (PMID: 10.1002/med.2193336658724)
Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M et al (2017) On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci 3(3):232–243. https://doi.org/10.1021/acscentsci.7b00028. (PMID: 10.1021/acscentsci.7b00028283866015364454)
Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS et al (2014) Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci U S A 111:16836–16841. (PMID: 10.1073/pnas.1415518111253856004250130)
Jin Y, Zhuang Y, Liu M, Che J, Dong X (2021) Inhibiting ferroptosis: a novel approach for stroke therapeutics. Drug Discov Today 26:916–930. (PMID: 10.1016/j.drudis.2020.12.02033412287)
La Rosa P, Petrillo S, Fiorenza MT, Bertini ES, Piemonte F (2020) Ferroptosis in Friedreich’s ataxia: a metal-induced neurodegenerative disease. Biomolecules 10(11):1551. https://doi.org/10.3390/biom10111551. (PMID: 10.3390/biom10111551332029717696618)
Petrillo S, D’Amico J, La Rosa P, Bertini ES, Piemonte F (2019) Targeting NRF2 for the treatment of Friedreich’s ataxia: a comparison among drugs. Int J Mol Sci 20(20):5211. https://doi.org/10.3390/ijms20205211. (PMID: 10.3390/ijms20205211316401506829337)
Buccellato FR, D’Anca M, Fenoglio C, Scarpini E, Galimberti D (2021) Role of oxidative damage in Alzheimer’s disease and neurodegeneration: from pathogenic mechanisms to biomarker discovery. Antioxidants 10(9):1353. https://doi.org/10.3390/antiox10091353. (PMID: 10.3390/antiox10091353345729858471953)
Cheng H, Wang P, Wang N, Dong W, Chen Z, Wu M, Wang Z, Yu Z et al (2023) Neuroprotection of NRF2 against ferroptosis after traumatic brain injury in mice. Antioxidants. 12(3):731. https://doi.org/10.3390/antiox12030731. (PMID: 10.3390/antiox120307313697897910044792)
Yang JH, Nguyen CD, Lee G, Na C-S (2022) Insamgobonhwan protects neuronal cells from lipid ROS and improves deficient cognitive function. Antioxidants 11(2):295. https://doi.org/10.3390/antiox11020295. (PMID: 10.3390/antiox11020295352041778868228)
Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW, Dietrich K, Wilkinson CM, Nadeau CA et al (2018) N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E 2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol 84(6):854–872. https://doi.org/10.1002/ana.25356. (PMID: 10.1002/ana.25356302949066519209)
Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, Remião F, Silva R (2023) Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther 244:108373. https://doi.org/10.1016/j.pharmthera.2023.108373. (PMID: 10.1016/j.pharmthera.2023.10837336894028)
Hou L, Huang R, Sun F, Zhang L, Wang Q (2019) NADPH oxidase regulates paraquat and maneb-induced dopaminergic neurodegeneration through ferroptosis. Toxicology 417:64–73. https://doi.org/10.1016/j.tox.2019.02.011. (PMID: 10.1016/j.tox.2019.02.01130797899)
Keynes RG, Karchevskaya A, Riddall D, Griffiths CH, Bellamy TC, Chan AWE, Selwood DL, Garthwaite J (2019) N 10 -carbonyl-substituted phenothiazines inhibiting lipid peroxidation and associated nitric oxide consumption powerfully protect brain tissue against oxidative stress. Chem Biol Drug Des 94(3):1680–1693. https://doi.org/10.1111/cbdd.13572. (PMID: 10.1111/cbdd.13572311279796790564)
Tschuck J, Nair VP, Galhoz A, Ciceri G, Rothenaigner I, Tchieu J, Tai H-M, Stockwell BR et al (2023) Suppression of ferroptosis by vitamin A or antioxidants is essential for neuronal development. BioRxiv 2023(04):05.535746. https://doi.org/10.1101/2023.04.05.535746. (PMID: 10.1101/2023.04.05.535746)
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R (2021) Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale 13(4):2266–2285. https://doi.org/10.1039/D0NR08478F. (PMID: 10.1039/D0NR08478F33480938)
Zhang Y, Fan B-Y, Pang Y-L, Shen W-Y, Wang X, Zhao C-X, Li W-X, Liu C et al (2020) Neuroprotective effect of deferoxamine on erastininduced ferroptosis in primary cortical neurons. Neural Regen Res 15(8):1539. https://doi.org/10.4103/1673-5374.274344. (PMID: 10.4103/1673-5374.274344319978207059591)
Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8. (PMID: 10.1038/s41580-020-00324-8334956518142022)
Gao Y, Wang T, Cheng Y, Wu Y, Zhu L, Gu Z, Wu Y, Cai L et al (2023) Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radic Biol Med 199:97–112. https://doi.org/10.1016/j.freeradbiomed.2023.02.014. (PMID: 10.1016/j.freeradbiomed.2023.02.01436805045)
Kuang F, Liu J, Tang D, Kang R (2020) Oxidative damage and antioxidant defense in ferroptosis. Front Cell. Dev Biol:8. https://doi.org/10.3389/fcell.2020.586578.
Sun Y, Xia X, Basnet D, Zheng JC, Huang J, Liu J (2022) Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases. Front Aging Neurosci:14. https://doi.org/10.3389/fnagi.2022.904152.
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X et al (2020) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6(1):41–53. https://doi.org/10.1021/acscentsci.9b01063. (PMID: 10.1021/acscentsci.9b0106331989025)
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J et al (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 16(12):1351–1360. https://doi.org/10.1038/s41589-020-0613-y. (PMID: 10.1038/s41589-020-0613-y327788438299533)
Duan L, Zhang Y, Yang Y, Su S, Zhou L, Lo P-C, Cai J, Qiao Y et al (2021) Baicalin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmacol:12. https://doi.org/10.3389/fphar.2021.629379.
Li Q, Li Q-Q, Jia J-N, Sun Q-Y, Zhou H-H, Jin W-L, Mao X-Y (2019) Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis. Front Pharmacol:10. https://doi.org/10.3389/fphar.2019.00638.
Fischer W, Currais A, Liang Z, Pinto A, Maher P (2019) Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biol 21:101089. https://doi.org/10.1016/j.redox.2018.101089. (PMID: 10.1016/j.redox.2018.10108930594901)
Maher P, Fischer W, Liang Z, Soriano-Castell D, Pinto AFM, Rebman J, Currais A (2020) The value of herbarium collections to the discovery of novel treatments for Alzheimer’s disease, a case made with the genus Eriodictyon. Front Pharmacol:11. https://doi.org/10.3389/fphar.2020.00208.
Gao Y, Li J, Wu Q, Wang S, Yang S, Li X, Chen N, Li L et al (2021) Tetrahydroxy stilbene glycoside ameliorates Alzheimer’s disease in APP/PS1 mice via glutathione peroxidase related ferroptosis. Int Immunopharmacol 99:108002. https://doi.org/10.1016/j.intimp.2021.108002. (PMID: 10.1016/j.intimp.2021.10800234333354)
Lv H-W, Wang Q-L, Luo M, Zhu M-D, Liang H-M, Li W-J, Cai H, Zhou Z-B et al (2023) Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 46(4):207–272. https://doi.org/10.1007/s12272-023-01443-4. (PMID: 10.1007/s12272-023-01443-43705561310101826)
Wen L, Shi D, Zhou T, Tu J, He M, Jiang Y, Yang B (2020) Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food Chem 315:126236. https://doi.org/10.1016/j.foodchem.2020.126236. (PMID: 10.1016/j.foodchem.2020.12623632000079)
Zhang Y, Lu X, Tai B, Li W, Li T (2021) Ferroptosis and its multifaceted roles in cerebral stroke. Front Cell Neurosci:15. https://doi.org/10.3389/fncel.2021.615372.
Takashima M, Ichihara K, Hirata Y (2019) Neuroprotective effects of Brazilian green propolis on oxytosis/ferroptosis in mouse hippocampal HT22 cells. Food Chem Toxicol 132:110669. https://doi.org/10.1016/j.fct.2019.110669. (PMID: 10.1016/j.fct.2019.11066931299294)
Gunesch S, Hoffmann M, Kiermeier C, Fischer W, Pinto AFM, Maurice T, Maher P, Decker M (2020) 7-O-Esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo. Redox Biol 29:101378. https://doi.org/10.1016/j.redox.2019.101378. (PMID: 10.1016/j.redox.2019.10137831926632)
Zheng K, Dong Y, Yang R, Liang Y, Wu H, He Z (2021) Regulation of ferroptosis by bioactive phytochemicals: implications for medical nutritional therapy. Pharmacol Res 168:105580. https://doi.org/10.1016/j.phrs.2021.105580. (PMID: 10.1016/j.phrs.2021.10558033781874)
Woo JH, Shimoni Y, Yang WS, Subramaniam P, Iyer A, Nicoletti P, Rodriguez Martinez M, Lopez G, Mattioli M, Realubit R et al (2015) Elucidating compound mechanism of action by network perturbation analysis. Cell. 162:441–451. (PMID: 10.1016/j.cell.2015.05.056261861954506491)
Weiwer M, Bittker JA, Lewis TA, Shimada K, Yang WS, MacPherson L, Dandapani S, Palmer M, Stockwell BR, Schreiber SL et al (2012) Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett 22:1822–1826. (PMID: 10.1016/j.bmcl.2011.09.04722297109)
Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, Zimmermann K, Cai LL, Niehues M, Badock V, Kramm A, Chen S, Hillig RC, Clemons PA, Gradl S, Montagnon C, Lazarski KE, Christian S, Bajrami B et al (2020) Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol 16(5):497–506. https://doi.org/10.1038/s41589-020-0501-5. (PMID: 10.1038/s41589-020-0501-5322313437251976)
Eaton JK, Ruberto RA, Kramm A, Viswanathan VS, Schreiber SL (2019) Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J Am Chem Soc 141:20407–20415. (PMID: 10.1021/jacs.9b1076931841309)
Hassannia B, Wiernicki B, Ingold I, Qu F, Van Herck S, Tyurina YY, Bayir H, Abhari BA, Angeli JPF, Choi SM et al (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341–3355. (PMID: 10.1172/JCI99032299391606063467)
Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14(4):248–264. https://doi.org/10.1038/nrn3430. (PMID: 10.1038/nrn343023463272)
Hardiman O, Van Den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):639–649. https://doi.org/10.1038/nrneurol.2011.153. (PMID: 10.1038/nrneurol.2011.15321989247)
Mitchell JD, Borasio GD (2007) Amyotrophic lateral sclerosis. Lancet 369(9578):2031–2041. https://doi.org/10.1016/S0140-6736(07)60944-1. (PMID: 10.1016/S0140-6736(07)60944-117574095)
Matus S, Medinas DB, Hetz C (2014) Common ground: stem cell approaches find shared pathways underlying ALS. Cell Stem Cell 14(6):697–699. https://doi.org/10.1016/j.stem.2014.05.001. (PMID: 10.1016/j.stem.2014.05.00124905158)
Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23. https://doi.org/10.1038/nn.3584. (PMID: 10.1038/nn.358424369373)
Vucic S, Rothstein JD, Kiernan MC (2014) Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 37(8):433–442. https://doi.org/10.1016/j.tins.2014.05.006. (PMID: 10.1016/j.tins.2014.05.00624927875)
Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79(3):416–438. https://doi.org/10.1016/j.neuron.2013.07.033. (PMID: 10.1016/j.neuron.2013.07.033239319934411085)
Murphy JM, Henry RG, Langmore S, Kramer JH, Miller BL, Lomen-Hoerth C (2007) Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol 64(4):530–534. https://doi.org/10.1001/archneur.64.4.530. (PMID: 10.1001/archneur.64.4.53017420314)
Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65(4):586–590. https://doi.org/10.1212/01.wnl.0000172911.39167.b6. (PMID: 10.1212/01.wnl.0000172911.39167.b616116120)
Van Blitterswijk M, Van Es MA, Hennekam EA, Dooijes D, Van Rheenen W, Medic J et al (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21(17):3776–3784. https://doi.org/10.1093/hmg/dds199. (PMID: 10.1093/hmg/dds19922645277)
Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry 76(8):1046–1057. https://doi.org/10.1136/jnnp.2004.048652. (PMID: 10.1136/jnnp.2004.048652160248771739758)
Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL et al (2012) Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS One 7(12):e52672. https://doi.org/10.1371/journal.pone.0052672. (PMID: 10.1371/journal.pone.0052672233007393530456)
Kanekura K, Suzuki H, Aiso S, Matsuoka M (2009) ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol 39(2):81–89. https://doi.org/10.1007/s12035-009-8054-3. (PMID: 10.1007/s12035-009-8054-319184563)
Hadzhieva M, Kirches E, Wilisch-Neumann A, Pachow D, Wallesch M, Schoenfeld P et al (2013) Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience 230:94–101. https://doi.org/10.1016/j.neuroscience.2012.11.021. (PMID: 10.1016/j.neuroscience.2012.11.02123178912)
Wu J, Tuo Q, Lei P (2018) Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci 66(2):197–206. https://doi.org/10.1007/s12031-018-1155-6. (PMID: 10.1007/s12031-018-1155-630145632)
Lee JK, Shin JH, Gwag BJ, Choi E-J (2015) Iron accumulation promotes TACE-mediated TNF-α secretion and neurodegeneration in a mouse model of ALS. Neurobiol Dis 80:63–69. https://doi.org/10.1016/j.nbd.2015.05.009. (PMID: 10.1016/j.nbd.2015.05.00926002422)
Jiang X, Chen J, Bajić A, Zhang C, Song X, Carroll SL et al (2017) Quantitative real-time imaging of glutathione. Nat Commun 8(1):1–13. https://doi.org/10.1038/ncomms16087. (PMID: 10.1038/ncomms16087)
Matsuo T, Adachi-Tominari K, Sano O, Kamei T, Nogami M, Ogi K et al (2021) Involvement of ferroptosis in human motor neuron cell death. Biochem Biophys Res Commun 566:24–29. https://doi.org/10.1016/j.bbrc.2021.05.095. (PMID: 10.1016/j.bbrc.2021.05.09534111668)
Devos D, Moreau C, Kyheng M, Garçon G, Rolland AS, Blasco H et al (2019) A ferroptosis–based panel of prognostic biomarkers for amyotrophic lateral sclerosis. Sci Rep 9(1):1–6. https://doi.org/10.1038/s41598-019-39739-5. (PMID: 10.1038/s41598-019-39739-5)
Homma T, Kobayashi S, Sato H, Fujii J (2019) Edaravone, a free radical scavenger, protects against ferroptotic cell death in vitro. Exp Cell Res 384(1):111592. https://doi.org/10.1016/j.yexcr.2019.111592. (PMID: 10.1016/j.yexcr.2019.11159231479686)
Southon A, Szostak K, Acevedo KM, Dent KA, Volitakis I, Belaidi AA et al (2020) CuII (atsm) inhibits ferroptosis: implications for treatment of neurodegenerative disease. Br J Pharmacol 177(3):656–667. https://doi.org/10.1111/bph.14881. (PMID: 10.1111/bph.14881316550037012947)
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD et al (1994) Motor neuron degeneration in mice that express a human Cu Zn superoxide dismutase mutation. Science 264(5166):1772–1775. https://doi.org/10.1126/science.8209258. (PMID: 10.1126/science.82092588209258)
Harper LC (2020) Alzheimer’s Association facts and figures. https://doi.org/10.1017/9781108974677.026.
Comas-Herrera A. Building on hope or tackling fear? Policy responses to the growing costs of Alzheimer’s disease and other dementias. Policy Responses Grow Costs Alzheimers Dis Dement July 30 2020Whart Pension Res Counc Work Pap. 2020;(2020–19).
Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142. (PMID: 10.1056/NEJMra090914220107219)
DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):1–18. https://doi.org/10.1186/s13024-019-0333-5. (PMID: 10.1186/s13024-019-0333-5)
Rai SN, Tiwari N, Singh P, Mishra D, Singh AK, Hooshmandi E, Vamanu E, Singh MP (2021) Therapeutic potential of vital transcription factors in Alzheimer’s and Parkinson’s disease with particular emphasis on transcription factor EB mediated autophagy. Front Neurosci 15:777347. https://doi.org/10.3389/fnins.2021.777347. (PMID: 10.3389/fnins.2021.777347349701148712758)
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, Chellappan DK, Dua K, Vamanu E, Chaudhary SK, Singh MP (2021) Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evidence-based complement altern med: eCAM:5578574. https://doi.org/10.1155/2021/5578574.
Singh AK, Mishra G, Maurya A, Awasthi R, Kumari K, Thakur A, Rai A, Rai GK, Sharma B, Kulkarni GT, Singh SK (2019) Role of TREM2 in Alzheimer’s disease and its consequences on β- amyloid, tau and neurofibrillary tangles. Curr Alzheimer Res 16(13):1216–1229. https://doi.org/10.2174/1567205016666190903102822. (PMID: 10.2174/156720501666619090310282231481003)
Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A, Rai GK, Awasthi R, Sharma B, Kulkarni GT (2019) Berberine: a plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 19(3):154–170. https://doi.org/10.2174/1871524919666190820160053. (PMID: 10.2174/187152491966619082016005331429696)
Sfera A, Bullock K, Price A, Inderias L, Osorio C (2018) Ferrosenescence: the iron age of neurodegeneration? Mech Ageing Dev 174:63–75. https://doi.org/10.1016/j.mad.2017.11.012. (PMID: 10.1016/j.mad.2017.11.01229180225)
Bradley-Whitman MA, Lovell MA (2015) Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch Toxicol 89(7):1035–1044. https://doi.org/10.1007/s00204-015-1517-6. (PMID: 10.1007/s00204-015-1517-6258951404466146)
Wang X, Wang W, Li L, Perry G, Lee H, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta BBA-Mol Basis Dis 1842(8):1240–1247. https://doi.org/10.1016/j.bbadis.2013.10.015. (PMID: 10.1016/j.bbadis.2013.10.015)
Obulesu M, Venu R, Somashekhar R (2011) Lipid peroxidation in Alzheimer’s disease: emphasis on metal-mediated neurotoxicity. Acta Neurol Scand 124(5):295–301. https://doi.org/10.1111/j.1600-0404.2010.01483.x. (PMID: 10.1111/j.1600-0404.2010.01483.x21303349)
Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC et al (2020) Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry 25(11):2932–2941. https://doi.org/10.1038/s41380-019-0375-7. (PMID: 10.1038/s41380-019-0375-730778133)
Derry PJ, Kent TA (2017) Correlating quantitative susceptibility mapping with cognitive decline in Alzheimer’s disease. Brain 140(8):2069–2072. https://doi.org/10.1093/brain/awx167. (PMID: 10.1093/brain/awx167288990226669403)
Lupton MK, Benyamin B, Proitsi P, Nyholt DR, Ferreira MA, Montgomery GW et al (2017) No genetic overlap between circulating iron levels and Alzheimer’s disease. J Alzheimers Dis 59(1):85–99. https://doi.org/10.3233/JAD-170027. (PMID: 10.3233/JAD-17002728582860)
Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5:33. https://doi.org/10.3389/fnagi.2013.00033. (PMID: 10.3389/fnagi.2013.00033238822143715721)
Cozza G, Rossetto M, Bosello-Travain V, Maiorino M, Roveri A, Toppo S et al (2017) Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: the polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radic Biol Med 112:1–11. https://doi.org/10.1016/j.freeradbiomed.2017.07.010. (PMID: 10.1016/j.freeradbiomed.2017.07.01028709976)
Ghosh D, LeVault KR, Barnett AJ, Brewer GJ (2012) A reversible early oxidized redox state that precedes macromolecular ROS damage in aging nontransgenic and 3xTg-AD mouse neurons. J Neurosci 32(17):5821–5832. https://doi.org/10.1523/JNEUROSCI.6192-11.2012. (PMID: 10.1523/JNEUROSCI.6192-11.2012225398443376759)
Venkateshappa C, Harish G, Mahadevan A, Bharath MS, Shankar SK (2012) Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 37(8):1601–1614. https://doi.org/10.1007/s11064-012-0755-8. (PMID: 10.1007/s11064-012-0755-822461064)
Yoo M-H, Gu X, Xu X-M, Kim J-Y, Carlson BA, Patterson AD et al (2010) Delineating the role of glutathione peroxidase 4 in protecting cells against lipid hydroperoxide damage and in Alzheimer’s disease. Antioxid Redox Signal 12(7):819–827. https://doi.org/10.1089/ars.2009.2891. (PMID: 10.1089/ars.2009.2891197694632861544)
Yoo S-E, Chen L, Na R, Liu Y, Rios C, Van Remmen H et al (2012) Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic Biol Med 52(9):1820–1827. (PMID: 10.1016/j.freeradbiomed.2012.02.043224018583341497)
Yan N, Zhang J (2020) Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front Neurosci 13:1443. https://doi.org/10.3389/fnins.2019.01443. (PMID: 10.3389/fnins.2019.01443320638247000453)
Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, Frank MJ, Jahanshahi M (2016) Motor symptoms in Parkinson’s disease: a unified framework. Neurosci Biobehav Rev 2016(68):727–740. https://doi.org/10.1016/j.neubiorev.2016.07.010. (PMID: 10.1016/j.neubiorev.2016.07.010)
Chakraborty A, Brauer S, Diwan A (2020) A review of possible therapies for Parkinson’s disease. J Clin Neurosci 76:1–4. https://doi.org/10.1016/j.jocn.2020.03.047. (PMID: 10.1016/j.jocn.2020.03.04732278516)
Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28(1):31–40. (PMID: 10.1002/mds.2537323390095)
Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease. Neurology 72(21 Supplement 4):S1–S136. (PMID: 19470958)
Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C (2019) Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233. (PMID: 10.1016/j.freeradbiomed.2018.09.03330266679)
Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, De S et al (2020) Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 27(10):2781–2796. (PMID: 10.1038/s41418-020-0542-z323414507492459)
Deas E, Cremades N, Angelova PR, Ludtmann MH, Yao Z, Chen S et al (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal 24(7):376–391. (PMID: 10.1089/ars.2015.6343265644704999647)
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. (PMID: 10.1016/S0896-6273(03)00568-312971891)
Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease Lancet Lond Engl 373:2055–2066.
Graham JM, Paley MN, Grünewald RA, Hoggard N, Griffiths PD (2000) Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain 123(12):2423–2431. (PMID: 10.1093/brain/123.12.242311099445)
Rossi M, Ruottinen H, Soimakallio S, Elovaara I, Dastidar P (2013) Clinical MRI for iron detection in Parkinson’s disease. Clin Imaging 37(4):631–636. (PMID: 10.1016/j.clinimag.2013.02.00123522789)
Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M et al (2016) Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 94:169–178. (PMID: 10.1016/j.nbd.2016.05.01127189756)
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A et al (2020) Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol 28:101328. (PMID: 10.1016/j.redox.2019.10132831574461)
Huang Z, Si W, Li X, Ye S, Liu X, Ji Y et al (2021) Moxibustion protects dopaminergic neurons in Parkinson’s disease through antiferroptosis. Evid Based Complement Alternat Med 2021.
Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV, Miki T et al (2011) Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson’s brain. Mol Neurodegener 6(1):1–10. (PMID: 10.1186/1750-1326-6-8)
Brigelius-Flohé R (2006) Glutathione peroxidases and redox-regulated transcription factors. Biol Chem 387(10-11):1329–1335. https://doi.org/10.1515/BC.2006.166. (PMID: 10.1515/BC.2006.16617081103)
Bai L, Yan F, Deng R, Gu R, Zhang X, Bai J (2021) Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4. Mol Neurobiol 1–11.
Gellera C, Meoni C, Castellotti B, Zappacosta B, Girotti F, Taroni F et al (1996) Errors in Huntington disease diagnostic test caused by trinucleotide deletion in the IT15 gene. Am J Hum Genet 59(2):475. (PMID: 87559371914734)
Caron NS, Wright GE, Hayden MR. Huntington disease. 2020;.
Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8(11–12):2061–2073. (PMID: 10.1089/ars.2006.8.206117034350)
Velusamy T, Panneerselvam AS, Purushottam M, Anusuyadevi M, Pal PK, Jain S et al (2017) Protective effect of antioxidants on neuronal dysfunction and plasticity in Huntington’s disease. Oxidative Med Cell Longev.
Chen J, Marks E, Lai B, Zhang Z, Duce JA, Lam LQ, Volitakis I, Bush AI, Hersch S, Fox JH (2013) Iron accumulates in HD neurons: protection by deferoxamine. PLoS One.
Rosas HD, Chen YI, Doros G, Salat DH, Chen N, Kwong KK et al (2012) Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol 69(7):887–893. (PMID: 10.1001/archneurol.2011.2945223931693652228)
Mi Y, Gao X, Xu H, Cui Y, Zhang Y, Gou X (2019) The emerging roles of ferroptosis in Huntington’s disease. NeuroMolecular Med 21(2):110–119. (PMID: 10.1007/s12017-018-8518-630600476)
Johnson WM, Wilson-Delfosse AL, Mieyal J (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10):1399–1440. (PMID: 10.3390/nu4101399232017623497002)
Klepac N, Relja M, Klepac R, Hećimović S, Babić T, Trkulja V (2007) Oxidative stress parameters in plasma of Huntington’s disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects. J Neurol 254(12):1676–1683. (PMID: 10.1007/s00415-007-0611-y17990062)
Kumar P, Kalonia H, Kumar A (2010) Nitric oxide mechanism in the protective effect of antidepressants against 3-nitropropionic acid-induced cognitive deficit, glutathione and mitochondrial alterations in animal model of Huntington’s disease. Behav Pharmacol 21(3):217–230. (PMID: 10.1097/FBP.0b013e32833a5bf420480544)
Mao Z, Choo YS, Lesort M (2006) Cystamine and cysteamine prevent 3-NP-induced mitochondrial depolarization of Huntington’s disease knock-in striatal cells. Eur J Neurosci 23(7):1701–1710. (PMID: 10.1111/j.1460-9568.2006.04686.x16623826)
فهرسة مساهمة: Keywords: AD; ALS; GPX4; Lipid peroxidation; Neurodegeneration; Oxidative stress; Oxytosis/ferroptosis; PD
المشرفين على المادة: EC 1.11.1.12 (Phospholipid Hydroperoxide Glutathione Peroxidase)
EC 1.11.1.9 (Glutathione Peroxidase)
GAN16C9B8O (Glutathione)
تواريخ الأحداث: Date Created: 20230919 Date Completed: 20240227 Latest Revision: 20240227
رمز التحديث: 20240227
DOI: 10.1007/s12035-023-03646-8
PMID: 37725216
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-1182
DOI:10.1007/s12035-023-03646-8