دورية أكاديمية

Biosynthesis of green CuO@C nanocomposite using Combretum indicum flower extract for organic dye removal: adsorption performance, modeling, and recyclability studies.

التفاصيل البيبلوغرافية
العنوان: Biosynthesis of green CuO@C nanocomposite using Combretum indicum flower extract for organic dye removal: adsorption performance, modeling, and recyclability studies.
المؤلفون: Bui DXM; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Vietnam., Nguyen UTP; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Vietnam., Nguyen TTT; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Vietnam., Nguyen DTD; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Vietnam., Nguyen DTC; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam., Tran TV; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam. tranuv@gmail.com.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Sep 23. Date of Electronic Publication: 2023 Sep 23.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مستخلص: Water contamination becomes one of the most high-priority environmental concerns, calling for the efficient treatment techniques. Bionanocomposites can be robust adsorbents, but the synthesis requires toxic chemicals or energy consuming and cause the secondary pollution. Green nanocomposites can be biogenically synthesized using the plant extract to end up with a critically safe strategy. Herein, we used the flower extract of Combretum indicum plant as a bio-based reductant and carbonaceous source for the green CuO@C nanocomposite. This green nanoadsorbent obtained a specific surface area of 17.33 m 2 /g, good crystallinity, and functional group-containing surface, i.e., -OH and -CONH-. We also conducted the optimization of parameters, i.e., concentration, CuO@C dose, pH, time, and temperature, and reached removal efficiencies towards malachite green (MG, 83.23%), Congo red (CR, 84.60%), brilliant blue (BB, 71.39%), and methylene blue (MB, 23.67%). The maximum adsorption capacities were found as ordered, MG (46.387 mg/g) > MB (23.154 mg/g) > BB (22.8 mg/g) > CR dye (11.063 mg/g). Through the intra-particle diffusion kinetic model, MG and BB adsorption endured a three-step process, while CR and MB adsorption was a two-step process. The recyclability of the green CuO@C nanocomposite was three cycles with 67.54% for the final cycle of BB removal. Moreover, the nanoadsorbent displayed a high stability, checked by X-ray diffraction, FT-IR analysis, EDX spectra, and SEM images. It is recommended that the green CuO@C nanocomposite biosynthesized using the Combretum indicum flower extract can be a good alternative for the dye treatment from wastewater.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abinaya S, Kavitha HP, Prakash M, Muthukrishnaraj A (2021) Green synthesis of magnesium oxide nanoparticles and its applications: a review. Sustain Chem Pharm 19:100368. https://doi.org/10.1016/j.scp.2020.100368. (PMID: 10.1016/j.scp.2020.100368)
Ahmadi S, Igwegbe CA (2020) Removal of methylene blue on zinc oxide nanoparticles: nonlinear and linear adsorption isotherms and kinetics study. Sigma J Eng Nat Sci 38:289–303.
Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK (2020) Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6:e04508. https://doi.org/10.1016/j.heliyon.2020.e04508. (PMID: 10.1016/j.heliyon.2020.e04508)
Al-Ahmed ZA, Hassan AA, El-Khouly SM, El-Shafey SE (2020) TEMPO-oxidized cellulose nanofibers/TiO 2 nanocomposite as new adsorbent for Brilliant Blue dye removal. Polym Bull 77:6213–6226. https://doi.org/10.1007/S00289-019-03068-4. (PMID: 10.1007/S00289-019-03068-4)
Al-Sabagh AM, Moustafa YM, Hamdy A et al (2018) Preparation and characterization of sulfonated polystyrene/magnetite nanocomposites for organic dye adsorption. Egypt J Pet 27:403–413. https://doi.org/10.1016/j.ejpe.2017.07.004. (PMID: 10.1016/j.ejpe.2017.07.004)
An HJ, Bhadra BN, Khan NA, Jhung SH (2018) Adsorptive removal of wide range of pharmaceutical and personal care products from water by using metal azolate framework-6-derived porous carbon. Chem Eng J 343:447–454. (PMID: 10.1016/j.cej.2018.03.025)
Babaei AA, Alavi SN, Akbarifar M et al (2016) Experimental and modeling study on adsorption of cationic methylene blue dye onto mesoporous biochars prepared from agrowaste. Desalin Water Treat 57:27199–27212. https://doi.org/10.1080/19443994.2016.1163736. (PMID: 10.1080/19443994.2016.1163736)
Bedin KC, de Azevedo SP, Leandro PKT et al (2017) Bone char prepared by CO 2 atmosphere: preparation optimization and adsorption studies of Remazol Brilliant Blue R. J Clean Prod 161:288–298. https://doi.org/10.1016/j.jclepro.2017.05.093. (PMID: 10.1016/j.jclepro.2017.05.093)
Benhammada A, Trache D, Chelouche S, Mezroua A (2021) Catalytic effect of green CuO nanoparticles on the thermal decomposition kinetics of ammonium perchlorate. Zeitschrift für Anorg und Allg Chemie 647:312–325. https://doi.org/10.1002/zaac.202000295. (PMID: 10.1002/zaac.202000295)
Berra D, Salah Eddine L, Boubaker B et al (2018) Green synthesis of copper oxide nanoparticles by Phoenix dactylifera L. leaves extract. Dig J Nanomater Biostructures 13:1231–1238.
Bhavyasree PG, Xavier TS (2021a) A critical green biosynthesis of novel CuO/C porous nanocomposite via the aqueous leaf extract of Ficus religiosa and their antimicrobial, antioxidant, and adsorption properties. Chem Eng J Adv 8:100152. https://doi.org/10.1016/j.ceja.2021.100152. (PMID: 10.1016/j.ceja.2021.100152)
Bhavyasree PG, Xavier TS (2021b) Adsorption studies of Methylene Blue, Coomassie Brilliant Blue, and Congo Red dyes onto CuO/C nanocomposites synthesized via Vitex negundo Linn leaf extract. Curr Res Green Sustain Chem 4:100161. https://doi.org/10.1016/j.crgsc.2021.100161. (PMID: 10.1016/j.crgsc.2021.100161)
Cheng B, Le Y, Cai W, Yu J (2011) Synthesis of hierarchical Ni(OH) 2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J Hazard Mater 185:889–897. https://doi.org/10.1016/j.jhazmat.2010.09.104. (PMID: 10.1016/j.jhazmat.2010.09.104)
Dashamiri S, Ghaedi M, Dashtian K et al (2016) Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: central composite design, kinetic and isotherm study. Ultrason Sonochem 31:546–557. https://doi.org/10.1016/j.ultsonch.2016.02.008. (PMID: 10.1016/j.ultsonch.2016.02.008)
de Lima Barizão AC, Silva MF, Andrade M et al (2020) Green synthesis of iron oxide nanoparticles for tartrazine and bordeaux red dye removal. J Environ Chem Eng 8:103618. https://doi.org/10.1016/j.jece.2019.103618. (PMID: 10.1016/j.jece.2019.103618)
Debnath P, Mondal NK (2020) Effective removal of congo red dye from aqueous solution using biosynthesized zinc oxide nanoparticles. Environ Nanotechnology, Monit Manag 14:100320. (PMID: 10.1016/j.enmm.2020.100320)
Dhananasekaran S, Palanivel R, Pappu S (2016) Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles. J Adv Res 7:113–124. (PMID: 10.1016/j.jare.2015.03.003)
Dörner L, Cancellieri C, Rheingans B et al (2019) Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Sci Rep 9:11758. https://doi.org/10.1038/s41598-019-48020-8. (PMID: 10.1038/s41598-019-48020-8)
Dulta K, Koşarsoy Ağçeli G, Chauhan P et al (2022) Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain Environ Res 32:2. https://doi.org/10.1186/s42834-021-00111-w. (PMID: 10.1186/s42834-021-00111-w)
El-Gamal SMA, Amin MS, Ahmed MA (2015) Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. J Environ Chem Eng 3:1702–1712. https://doi.org/10.1016/j.jece.2015.06.022. (PMID: 10.1016/j.jece.2015.06.022)
El-Zahhar AA, Awwad NS, El-Katori EE (2014) Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. J Mol Liq 199:454–461. https://doi.org/10.1016/j.molliq.2014.07.034. (PMID: 10.1016/j.molliq.2014.07.034)
El Qada EN, Allen SJ, Walker GM (2006) Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem Eng J 124:103–110. https://doi.org/10.1016/j.cej.2006.08.015. (PMID: 10.1016/j.cej.2006.08.015)
Elkady MF, Shokry Hassan H, El-Sayed EM (2015) Basic violet decolourization using alginate immobilized nanozirconium tungestovanadate matrix as cation exchanger. J Chem 2015:1–10. https://doi.org/10.1155/2015/385741. (PMID: 10.1155/2015/385741)
Eltaweil AS, Ali Mohamed H, Abd El-Monaem EM, El-Subruiti GM (2020) Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms. Adv Powder Technol 31:1253–1263. https://doi.org/10.1016/j.apt.2020.01.005. (PMID: 10.1016/j.apt.2020.01.005)
Fatima B, Siddiqui SI, Nirala RK et al (2021) Facile green synthesis of ZnO–CdWO 4 nanoparticles and their potential as adsorbents to remove organic dye. Environ Pollut 271:116401. https://doi.org/10.1016/j.envpol.2020.116401. (PMID: 10.1016/j.envpol.2020.116401)
Forid MS, Rahman MA, Aluwi MFFM et al (2021) Pharmacoinformatics and UPLC-QTOF/ESI-MS-based phytochemical screening of combretum indicum against oxidative stress and alloxan-induced diabetes in Long–Evans rats. Molecules 26:4634. https://doi.org/10.3390/molecules26154634. (PMID: 10.3390/molecules26154634)
Fu J, Chen Z, Wang M et al (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61. (PMID: 10.1016/j.cej.2014.07.101)
Garg VK, Kumar R, Gupta R (2004) Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dye Pigment 62:1–10. https://doi.org/10.1016/j.dyepig.2003.10.016. (PMID: 10.1016/j.dyepig.2003.10.016)
Gautam RK, Rawat V, Banerjee S et al (2015) Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. J Mol Liq 212:227–236. https://doi.org/10.1016/j.molliq.2015.09.006. (PMID: 10.1016/j.molliq.2015.09.006)
Ghaedi M, Ansari A, Habibi MH, Asghari AR (2014) Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. J Ind Eng Chem 20:17–28. https://doi.org/10.1016/j.jiec.2013.04.031. (PMID: 10.1016/j.jiec.2013.04.031)
Ghaemi M, Absalan G, Sheikhian L (2014) Adsorption characteristics of Titan yellow and Congo red on CoFe 2 O 4 magnetic nanoparticles. J Iran Chem Soc 11:1759–1766. https://doi.org/10.1007/S13738-014-0448-0. (PMID: 10.1007/S13738-014-0448-0)
Ghidan AY, Al-Antary TM, Awwad AM (2016) Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: effect on green peach aphid. Environ Nanotechnology, Monit Manag 6:95–98. https://doi.org/10.1016/j.enmm.2016.08.002. (PMID: 10.1016/j.enmm.2016.08.002)
Ghissing U, Goswami A, Mitra A (2021) Temporal accumulation of pigments during colour transformation from white to red in Combretum indicum (L.) DeFilipps (syn. Quisqualis indica L.) flowers. Nat Prod Res:1–5. https://doi.org/10.1080/14786419.2021.1984467.
Ghissing U, Kutty NN, Bimolata W et al (2023) Comparative transcriptome analysis reveals an insight into the candidate genes involved in anthocyanin and scent volatiles biosynthesis in colour changing flowers of Combretum indicum. Plant Biol 25:85–95. https://doi.org/10.1111/plb.13481. (PMID: 10.1111/plb.13481)
Ghosh N, Sen S, Biswas G et al (2022) A comparative study of CuO nanoparticle and CuO/PVA-PVP nanocomposite on the basis of dye removal performance and antibacterial activity in wastewater treatment. Int J Environ Anal Chem:1–21. https://doi.org/10.1080/03067319.2022.2060088.
Gunalan S, Sivaraj R, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta Part A Mol Biomol Spectrosc 97:1140–1144. https://doi.org/10.1016/j.saa.2012.07.096. (PMID: 10.1016/j.saa.2012.07.096)
Gupta N, Kushwaha AK, Chattopadhyaya MC (2016) Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab J Chem 9:S707–S716. https://doi.org/10.1016/j.arabjc.2011.07.021. (PMID: 10.1016/j.arabjc.2011.07.021)
Helmiyati H, Fitriana N, Chaerani ML, Dini FW (2022) Green hybrid photocatalyst containing cellulose and γ–Fe 2 O 3 –ZrO 2 heterojunction for improved visible-light driven degradation of Congo red. Opt Mater (Amst) 124:111982. https://doi.org/10.1016/j.optmat.2022.111982. (PMID: 10.1016/j.optmat.2022.111982)
Jadoun S, Arif R, Jangid NK, Meena RK (2021) Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett 19:355–374. (PMID: 10.1007/s10311-020-01074-x)
Kaur S, Rani S, Mahajan RK et al (2015) Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: kinetics, equilibrium, and thermodynamics. J Ind Eng Chem 22:19–27. (PMID: 10.1016/j.jiec.2014.06.019)
Khan FSA, Mubarak NM, Khalid M et al (2020) Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environ Sci Pollut Res 27:24342–24356. https://doi.org/10.1007/s11356-020-08711-6. (PMID: 10.1007/s11356-020-08711-6)
Khani R, Roostaei B, Bagherzade G, Moudi M (2018) Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: application for adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq 255:541–549. https://doi.org/10.1016/j.molliq.2018.02.010. (PMID: 10.1016/j.molliq.2018.02.010)
Krishna Murthy TP, Gowrishankar BS, Chandra Prabha MN et al (2019) Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: equilibrium, kinetics and thermodynamic studies. Microchem J 146:192–201. https://doi.org/10.1016/j.microc.2018.12.067. (PMID: 10.1016/j.microc.2018.12.067)
Kumar PS, Ramalingam S, Senthamarai C et al (2010) Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261:52–60. (PMID: 10.1016/j.desal.2010.05.032)
Kumari P, Panda PK, Jha E et al (2017) (2017) Mechanistic insight to ROS and apoptosis regulated cytotoxicity inferred by green synthesized CuO nanoparticles from Calotropis gigantea to embryonic zebrafish. Sci Reports 71(7):1–17. https://doi.org/10.1038/s41598-017-16581-1. (PMID: 10.1038/s41598-017-16581-1)
Liu X, An S, Wang Y et al (2015) Rapid selective separation and recovery of a specific target dye from mixture consisted of different dyes by magnetic Ca-ferrites nanoparticles. Chem Eng J 262:517–526. https://doi.org/10.1016/j.cej.2014.10.002. (PMID: 10.1016/j.cej.2014.10.002)
Maazinejad B, Mohammadnia O, Ali GAM et al (2020) Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J Mol Liq 298:112001. https://doi.org/10.1016/j.molliq.2019.112001. (PMID: 10.1016/j.molliq.2019.112001)
Mahmoud AED, Al-Qahtani KM, Alflaij SO et al (2021) Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci Rep 11:12547. https://doi.org/10.1038/s41598-021-91093-7. (PMID: 10.1038/s41598-021-91093-7)
Mate CJ, Mishra S (2020) Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol 151:677–690. https://doi.org/10.1016/j.ijbiomac.2020.02.192. (PMID: 10.1016/j.ijbiomac.2020.02.192)
Naghizade Asl M, Mahmodi NM, Teymouri P et al (2016) Adsorption of organic dyes using copper oxide nanoparticles: isotherm and kinetic studies. Desalin Water Treat 57:25278–25287. https://doi.org/10.1080/19443994.2016.1151832. (PMID: 10.1080/19443994.2016.1151832)
Namasivayam C, Prabha D, Kumutha M (1998) Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresour Technol 64:77–79. https://doi.org/10.1016/S0960-8524(97)86722-3. (PMID: 10.1016/S0960-8524(97)86722-3)
Nandoost A, Bahramifar N, Moghadamnia AA, Kazemi S (2022) Adsorption of malachite green (MG) as a cationic dye on Amberlyst 15, an ion-exchange resin. J Environ Public Health 2022:1–9. https://doi.org/10.1155/2022/4593835. (PMID: 10.1155/2022/4593835)
Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Hussin SM (2016) Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J Colloid Interface Sci 466:113–119. https://doi.org/10.1016/j.jcis.2015.12.018. (PMID: 10.1016/j.jcis.2015.12.018)
Nguyen NTT, Nguyen LM, Nguyen TTT et al (2022a) Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. Environ Chem Lett 20:2531–2571. https://doi.org/10.1007/s10311-022-01425-w. (PMID: 10.1007/s10311-022-01425-w)
Nguyen NTT, Nguyen LM, Nguyen TTT et al (2022b) Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: a review. Sci Total Environ 827:154160. https://doi.org/10.1016/j.scitotenv.2022.154160. (PMID: 10.1016/j.scitotenv.2022.154160)
Pandey G, Singh S, Hitkari G (2018) Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe 3 O 4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process. Int Nano Lett 8:111–121. https://doi.org/10.1007/S40089-018-0234-6. (PMID: 10.1007/S40089-018-0234-6)
Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chinese J Chem Eng 23:1307–1315. https://doi.org/10.1016/j.cjche.2015.05.012. (PMID: 10.1016/j.cjche.2015.05.012)
Phang Y-K, Aminuzzaman M, Akhtaruzzaman M et al (2021) Green synthesis and characterization of CuO nanoparticles derived from papaya peel extract for the photocatalytic degradation of palm oil mill effluent (POME). Sustainability 13:796. https://doi.org/10.3390/su13020796. (PMID: 10.3390/su13020796)
Prajapati AK, Mondal MK (2020) Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. J Mol Liq 307:112949. https://doi.org/10.1016/j.molliq.2020.112949. (PMID: 10.1016/j.molliq.2020.112949)
Priya DD, Nandhakumar M, Shanavas S et al (2021) Aerva lanata-mediated bio-treated production of copper oxide nanoparticles, optimization by BBD–RSM method and it behaviour against water related mosquito. Appl Nanosci 11:207–216. https://doi.org/10.1007/S13204-020-01573-X. (PMID: 10.1007/S13204-020-01573-X)
Rafique M, Shafiq F, Ali Gillani SS et al (2020) Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. Optik (Stuttg) 208:164053. https://doi.org/10.1016/j.ijleo.2019.164053. (PMID: 10.1016/j.ijleo.2019.164053)
Raman CD, Sellappa K, Mkandawire M (2021) Facile one step green synthesis of iron nanoparticles using grape leaves extract: textile dye decolorization and wastewater treatment. Water Sci Technol 83:2242–2258. https://doi.org/10.2166/wst.2021.140. (PMID: 10.2166/wst.2021.140)
Ramesh AV, Rama Devi D, Mohan Botsa S, Basavaiah K (2018) Facile green synthesis of Fe 3 O 4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. J Asian Ceram Soc 6:145–155. https://doi.org/10.1080/21870764.2018.1459335. (PMID: 10.1080/21870764.2018.1459335)
Rashad M, Al-Aoh HA (2019) Promising adsorption studies of bromophenol blue using copper oxide nanoparticles. Desalin WATER Treat 139:360–368. https://doi.org/10.5004/dwt.2019.23296. (PMID: 10.5004/dwt.2019.23296)
Reddy KR (2017) Green synthesis, morphological and optical studies of CuO nanoparticles. J Mol Struct 1150:553–557. https://doi.org/10.1016/j.molstruc.2017.09.005. (PMID: 10.1016/j.molstruc.2017.09.005)
Rehman R, Majeed S (2022) Biosorptive removal of crystal violet dye from aqueous solutions by Ficus religiosa leaves and Daucus carota pomace in ecofriendly way. Int J Phytoremediation 24:1004–1013. https://doi.org/10.1080/15226514.2021.1991269. (PMID: 10.1080/15226514.2021.1991269)
Sankar R, Manikandan P, Malarvizhi V et al (2014) Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta Part A Mol Biomol Spectrosc 121:746–750. https://doi.org/10.1016/j.saa.2013.12.020. (PMID: 10.1016/j.saa.2013.12.020)
Sankaran A, Kumaraguru K (2020) The novel two step synthesis of CuO/ZnO and CuO/CdO nanocatalysts for enhancement of catalytic activity. J Mol Struct 1221:128772. https://doi.org/10.1016/j.molstruc.2020.128772. (PMID: 10.1016/j.molstruc.2020.128772)
Saravanan A, Kumar PS, Hemavathy RV et al (2022) A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Sci Total Environ 812:152456. https://doi.org/10.1016/j.scitotenv.2021.152456. (PMID: 10.1016/j.scitotenv.2021.152456)
Sathiyavimal S, Vasantharaj S, Bharathi D et al (2018) Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Photobiol B Biol 188:126–134. https://doi.org/10.1016/j.jphotobiol.2018.09.014. (PMID: 10.1016/j.jphotobiol.2018.09.014)
Sathiyavimal S, Vasantharaj S, Veeramani V et al (2021) Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. J Environ Chem Eng 9:105033. https://doi.org/10.1016/j.jece.2021.105033. (PMID: 10.1016/j.jece.2021.105033)
Shu J, Wang Z, Huang Y et al (2015) Adsorption removal of Congo red from aqueous solution by polyhedral Cu 2 O nanoparticles: kinetics, isotherms, thermodynamics and mechanism analysis. J Alloys Compd 633:338–346. https://doi.org/10.1016/j.jallcom.2015.02.048. (PMID: 10.1016/j.jallcom.2015.02.048)
Singh KK, Senapati KK, Sarma KC (2017) Synthesis of superparamagnetic Fe 3 O 4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution. J Environ Chem Eng 5:2214–2221. https://doi.org/10.1016/j.jece.2017.04.022. (PMID: 10.1016/j.jece.2017.04.022)
Singh S, Perween S, Ranjan A (2021) Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J Environ Chem Eng 9:105149. https://doi.org/10.1016/j.jece.2021.105149. (PMID: 10.1016/j.jece.2021.105149)
Sohni S, Gul K, Ahmad F et al (2018) Highly efficient removal of acid red-17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite. Polym Compos 39:3317–3328. https://doi.org/10.1002/pc.24349. (PMID: 10.1002/pc.24349)
Srivastava V, Choubey AK (2021) Investigation of adsorption of organic dyes present in wastewater using chitosan beads immobilized with biofabricated CuO nanoparticles. J Mol Struct 1242:130749. https://doi.org/10.1016/j.molstruc.2021.130749. (PMID: 10.1016/j.molstruc.2021.130749)
Srivastava V, Choubey AK (2020) Kinetic and isothermal study of effect of transition metal doping on adsorptive property of zinc oxide nanoparticles synthesized via green route using Moringa oleifera leaf extract. Mater Res Express 6:1250i7. https://doi.org/10.1088/2053-1591/ab7158. (PMID: 10.1088/2053-1591/ab7158)
Tang SH, Zaini MAA (2017) Congo red removal by HNO 3 -modified resorcinol-formaldehyde carbon gels. Chem Eng Trans 56:835–840. https://doi.org/10.3303/CET1756140. (PMID: 10.3303/CET1756140)
Thamer BM, Aldalbahi A, Moydeen AM et al (2019) Effective adsorption of Coomassie brilliant blue dye using poly(phenylene diamine) grafted electrospun carbon nanofibers as a novel adsorbent. Mater Chem Phys 234:133–145. https://doi.org/10.1016/j.matchemphys.2019.05.087. (PMID: 10.1016/j.matchemphys.2019.05.087)
Tran TV, Nguyen DTC, Kumar PS et al (2022a) Green synthesis of Mn 3 O 4 nanoparticles using Costus woodsonii flowers extract for effective removal of malachite green dye. Environ Res 214:113925. https://doi.org/10.1016/j.envres.2022.113925. (PMID: 10.1016/j.envres.2022.113925)
Tran TV, Nguyen DTC, Kumar PS et al (2022b) Green synthesis of ZrO 2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ Chem Lett 20:1309–1331. https://doi.org/10.1007/s10311-021-01367-9. (PMID: 10.1007/s10311-021-01367-9)
Tran TV, Vo D-VN, Nguyen DTC et al (2022c) Effective mitigation of single-component and mixed textile dyes from aqueous media using recyclable graphene-based nanocomposite. Environ Sci Pollut Res 29:32120–32141. https://doi.org/10.1007/s11356-022-18570-y. (PMID: 10.1007/s11356-022-18570-y)
Veisi H, Karmakar B, Tamoradi T et al (2021) Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys lavandulifolia) flowers and evaluation of its catalytic activity. Sci Rep 11:1983. https://doi.org/10.1038/s41598-021-81320-6. (PMID: 10.1038/s41598-021-81320-6)
Vidovix TB, Quesada HB, Bergamasco R et al (2021) Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from Punica granatum leaf extract. Environ Technol:1–17. https://doi.org/10.1080/09593330.2021.1914180.
Wang D, Liu L, Jiang X et al (2015) Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids Surfaces A Physicochem Eng Asp 466:166–173. https://doi.org/10.1016/j.colsurfa.2014.11.021. (PMID: 10.1016/j.colsurfa.2014.11.021)
Wang J, Guo X (2020) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258:127279. https://doi.org/10.1016/j.chemosphere.2020.127279. (PMID: 10.1016/j.chemosphere.2020.127279)
Wu X, Wang W, Li F et al (2016) PEG-assisted hydrothermal synthesis of CoFe 2 O 4 nanoparticles with enhanced selective adsorption properties for different dyes. Appl Surf Sci 389:1003–1011. (PMID: 10.1016/j.apsusc.2016.08.053)
Zafar MN, Dar Q, Nawaz F et al (2019) Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J Mater Res Technol 8:713–725. https://doi.org/10.1016/j.jmrt.2018.06.002. (PMID: 10.1016/j.jmrt.2018.06.002)
Zhang B, Jin Y, Qi J et al (2021) Porous carbon materials based on Physalis alkekengi L. husk and its application for removal of malachite green. Environ Technol Innov 21:101343. https://doi.org/10.1016/j.eti.2020.101343. (PMID: 10.1016/j.eti.2020.101343)
Zhang Y-R, Wang S-Q, Shen S-L, Zhao B-X (2013) A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chem Eng J 233:258–264. https://doi.org/10.1016/j.cej.2013.07.009. (PMID: 10.1016/j.cej.2013.07.009)
فهرسة مساهمة: Keywords: Biosynthesis; Combretum indicum; Dye treatment; Flower extract; Green CuO@C nanocomposite
تواريخ الأحداث: Date Created: 20230923 Latest Revision: 20230923
رمز التحديث: 20231215
DOI: 10.1007/s11356-023-29707-y
PMID: 37740802
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-29707-y