دورية أكاديمية

Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO).

التفاصيل البيبلوغرافية
العنوان: Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO).
المؤلفون: Boldrini L; UOC Radioterapia Oncologica, Fondazione Policlinico Universitario IRCCS 'A. Gemelli', Rome, Italy.; Università Cattolica del Sacro Cuore, Rome, Italy., D'Aviero A; Radiation Oncology, Mater Olbia Hospital, Olbia, Sassari, Italy., De Felice F; Radiation Oncology, Department of Radiological, Policlinico Umberto I, Rome, Italy.; Oncological and Pathological Sciences, 'Sapienza' University of Rome, Rome, Italy., Desideri I; Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy., Grassi R; Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy., Greco C; Department of Radiation Oncology, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy., Iorio GC; Department of Oncology, Radiation Oncology, University of Turin, Turin, Italy., Nardone V; Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy., Piras A; UO Radioterapia Oncologica, Villa Santa Teresa, Bagheria, Palermo, Italy. antoniopiras88@gmail.com., Salvestrini V; Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.; Cyberknife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), 50139, Florence, Italy.
المصدر: La Radiologia medica [Radiol Med] 2024 Jan; Vol. 129 (1), pp. 133-151. Date of Electronic Publication: 2023 Sep 23.
نوع المنشور: Systematic Review; Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Milan Country of Publication: Italy NLM ID: 0177625 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1826-6983 (Electronic) Linking ISSN: 00338362 NLM ISO Abbreviation: Radiol Med Subsets: MEDLINE
أسماء مطبوعة: Publication: Milan : Springer Milan
Original Publication: Torino [etc.] Minerva medica.
مواضيع طبية MeSH: Radiotherapy, Image-Guided*/methods , Radiation Oncology*/methods, Humans ; Artificial Intelligence ; Retrospective Studies ; Radiotherapy Planning, Computer-Assisted/methods ; Italy
مستخلص: Introduction: The advent of image-guided radiation therapy (IGRT) has recently changed the workflow of radiation treatments by ensuring highly collimated treatments. Artificial intelligence (AI) and radiomics are tools that have shown promising results for diagnosis, treatment optimization and outcome prediction. This review aims to assess the impact of AI and radiomics on modern IGRT modalities in RT.
Methods: A PubMed/MEDLINE and Embase systematic review was conducted to investigate the impact of radiomics and AI to modern IGRT modalities. The search strategy was "Radiomics" AND "Cone Beam Computed Tomography"; "Radiomics" AND "Magnetic Resonance guided Radiotherapy"; "Radiomics" AND "on board Magnetic Resonance Radiotherapy"; "Artificial Intelligence" AND "Cone Beam Computed Tomography"; "Artificial Intelligence" AND "Magnetic Resonance guided Radiotherapy"; "Artificial Intelligence" AND "on board Magnetic Resonance Radiotherapy" and only original articles up to 01.11.2022 were considered.
Results: A total of 402 studies were obtained using the previously mentioned search strategy on PubMed and Embase. The analysis was performed on a total of 84 papers obtained following the complete selection process. Radiomics application to IGRT was analyzed in 23 papers, while a total 61 papers were focused on the impact of AI on IGRT techniques.
Discussion: AI and radiomics seem to significantly impact IGRT in all the phases of RT workflow, even if the evidence in the literature is based on retrospective data. Further studies are needed to confirm these tools' potential and provide a stronger correlation with clinical outcomes and gold-standard treatment strategies.
(© 2023. Italian Society of Medical Radiology.)
References: Ramesh AN, Kambhampati C, Monson JRT, Drew PJ (2004) Artificial intelligence in medicine. Ann R Coll Surg Engl 86:334–338. https://doi.org/10.1308/147870804290. (PMID: 10.1308/147870804290153331671964229)
Vandewinckele L, Claessens M, Dinkla A et al (2020) Overview of artificial intelligence-based applications in radiotherapy: recommendations for implementation and quality assurance. Radiother Oncol 153:55–66. https://doi.org/10.1016/j.radonc.2020.09.008. (PMID: 10.1016/j.radonc.2020.09.00832920005)
Huynh E, Hosny A, Guthier C et al (2020) Artificial intelligence in radiation oncology. Nat Rev Clin Oncol 17:771–781. https://doi.org/10.1038/s41571-020-0417-8. (PMID: 10.1038/s41571-020-0417-832843739)
Cesario A, D’Oria M, Calvani R et al (2021) The role of artificial intelligence in managing multimorbidity and cancer. J Pers Med 11:314. https://doi.org/10.3390/jpm11040314. (PMID: 10.3390/jpm11040314339216218074144)
Cusumano D, Lenkowicz J, Votta C et al (2020) A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiother Oncol 153:205–212. https://doi.org/10.1016/j.radonc.2020.10.018. (PMID: 10.1016/j.radonc.2020.10.01833075394)
Gambacorta MA, Valentini C, Dinapoli N et al (2013) Clinical validation of atlas-based auto-segmentation of pelvic volumes and normal tissue in rectal tumors using auto-segmentation computed system. Acta Oncol 52:1676–1681. https://doi.org/10.3109/0284186X.2012.754989. (PMID: 10.3109/0284186X.2012.75498923336255)
Fionda B, Boldrini L, D’Aviero A et al (2020) Artificial intelligence (AI) and interventional radiotherapy (brachytherapy): state of art and future perspectives. J Contemp Brachyther 12:497–500. https://doi.org/10.5114/jcb.2020.100384. (PMID: 10.5114/jcb.2020.100384)
Nardone V, Reginelli A, Grassi R et al (2021) Delta radiomics: a systematic review. Radiol Med 126:1571–1583. https://doi.org/10.1007/s11547-021-01436-7. (PMID: 10.1007/s11547-021-01436-734865190)
Cusumano D, Boldrini L, Yadav P et al (2021) Delta radiomics analysis for local control prediction in pancreatic cancer patients treated using magnetic resonance guided radiotherapy. Diagnostics 11:72. https://doi.org/10.3390/diagnostics11010072. (PMID: 10.3390/diagnostics11010072334663077824764)
Casà C, Piras A, D’Aviero A et al (2022) The impact of radiomics in diagnosis and staging of pancreatic cancer. Ther Adv Gastrointest Endosc 15:26317745221081596. https://doi.org/10.1177/26317745221081596. (PMID: 10.1177/26317745221081596353428838943316)
Cusumano D, Boldrini L, Yadav P et al (2021) Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation. Phys Med 84:186–191. https://doi.org/10.1016/j.ejmp.2021.03.038. (PMID: 10.1016/j.ejmp.2021.03.03833901863)
Alongi P, Stefano A, Comelli A et al (2021) Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients. Eur Radiol 31:4595–4605. https://doi.org/10.1007/s00330-020-07617-8. (PMID: 10.1007/s00330-020-07617-833443602)
Chiloiro G, Rodriguez-Carnero P, Lenkowicz J et al (2020) Delta radiomics can predict distant metastasis in locally advanced rectal cancer: the challenge to personalize the cure. Front Oncol 10:595012. https://doi.org/10.3389/fonc.2020.595012. (PMID: 10.3389/fonc.2020.595012333442437744725)
Boldrini L, Cusumano D, Chiloiro G et al (2019) Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med 124:145–153. https://doi.org/10.1007/s11547-018-0951-y. (PMID: 10.1007/s11547-018-0951-y30374650)
Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446. https://doi.org/10.1016/j.ejca.2011.11.036. (PMID: 10.1016/j.ejca.2011.11.036222577924533986)
Gardin I, Grégoire V, Gibon D et al (2019) Radiomics: principles and radiotherapy applications. Crit Rev Oncol Hematol 138:44–50. https://doi.org/10.1016/j.critrevonc.2019.03.015. (PMID: 10.1016/j.critrevonc.2019.03.01531092384)
Luh JY, Albuquerque KV, Cheng C et al (2020) ACR-ASTRO practice parameter for image-guided radiation therapy (IGRT). Am J Clin Oncol 43:459–468. https://doi.org/10.1097/COC.0000000000000697. (PMID: 10.1097/COC.000000000000069732452841)
Gillan C, Giuliani M, Harnett N et al (2016) Image guided radiation therapy: unlocking the future through knowledge translation. Int J Radiat Oncol Biol Phys 96:248–250. https://doi.org/10.1016/j.ijrobp.2016.05.028. (PMID: 10.1016/j.ijrobp.2016.05.02827598801)
Sharma M, Nano TF, Akkati M et al (2022) A systematic review and meta-analysis of liver tumor position variability during SBRT using various motion management and IGRT strategies. Radiother Oncol 166:195–202. https://doi.org/10.1016/j.radonc.2021.11.022. (PMID: 10.1016/j.radonc.2021.11.02234843841)
Lee J, Liu S-H, Lin J-B et al (2018) Image-guided study of inter-fraction and intra-fraction set-up variability and margins in reverse semi-decubitus breast radiotherapy. Radiat Oncol 13:254. https://doi.org/10.1186/s13014-018-1200-1. (PMID: 10.1186/s13014-018-1200-1305872086307193)
Corradini S, Alongi F, Andratschke N et al (2019) MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol 14:92. https://doi.org/10.1186/s13014-019-1308-y. (PMID: 10.1186/s13014-019-1308-y311676586551911)
Boldrini L, Cusumano D, Cellini F et al (2019) Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiat Oncol 14:71. https://doi.org/10.1186/s13014-019-1275-3. (PMID: 10.1186/s13014-019-1275-3310360346489212)
Zhang Y, Liang Y, Ding J et al (2022) A prior knowledge-guided, deep learning-based semiautomatic segmentation for complex anatomy on magnetic resonance imaging. Int J Radiat Oncol Biol Phys 114:349–359. https://doi.org/10.1016/j.ijrobp.2022.05.039. (PMID: 10.1016/j.ijrobp.2022.05.039356675259639200)
D’Aviero A, Re A, Catucci F et al (2022) Clinical validation of a deep-learning segmentation software in head and neck: an early analysis in a Developing Radiation Oncology Center. Int J Environ Res Public Health 19:9057. https://doi.org/10.3390/ijerph19159057. (PMID: 10.3390/ijerph19159057358974259329735)
Brunt AM, Haviland JS, Wheatley DA et al (2020) Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. The Lancet 395:1613–1626. https://doi.org/10.1016/S0140-6736(20)30932-6. (PMID: 10.1016/S0140-6736(20)30932-6)
Piras A, Menna S, D’Aviero A et al (2021) New fractionations in breast cancer: a dosimetric study of 3D-CRT versus VMAT. J Med Radiat Sci. https://doi.org/10.1002/jmrs.530. (PMID: 10.1002/jmrs.530345512119163458)
Ling DC, Vargo JA, Beriwal S (2020) Breast, prostate, and rectal cancer: Should 5–5-5 be a new standard of care? Int J Radiat Oncol Biol Phys 108:390–393. https://doi.org/10.1016/j.ijrobp.2020.06.049. (PMID: 10.1016/j.ijrobp.2020.06.049328905177462831)
Piras A, Boldrini L, Menna S et al (2021) Hypofractionated radiotherapy in head and neck cancer elderly patients: a feasibility and safety systematic review for the clinician. Front Oncol 11:761393. https://doi.org/10.3389/fonc.2021.761393. (PMID: 10.3389/fonc.2021.761393348689768633531)
Massaccesi M, Boldrini L, Piras A et al (2020) Spatially fractionated radiotherapy (SFRT) targeting the hypoxic tumor segment for the intentional induction of non-targeted effects: an in silico study to exploit a new treatment paradigm. Tech Innov Patient Support Radiat Oncol 14:11–14. https://doi.org/10.1016/j.tipsro.2020.02.003. (PMID: 10.1016/j.tipsro.2020.02.003321543947052565)
Piras A, Venuti V, D’Aviero A et al (2022) Covid-19 and radiotherapy: a systematic review after 2 years of pandemic. Clin Transl Imaging 66:1–20. https://doi.org/10.1007/s40336-022-00513-9. (PMID: 10.1007/s40336-022-00513-9)
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71.
Tomaszewski MR, Latifi K, Boyer E et al (2021) Delta radiomics analysis of magnetic resonance guided radiotherapy imaging data can enable treatment response prediction in pancreatic cancer. Radiat Oncol 16:237. https://doi.org/10.1186/s13014-021-01957-5. (PMID: 10.1186/s13014-021-01957-5349115468672552)
Chiloiro G, Boldrini L, Preziosi F et al (2022) A predictive model of 2yDFS during MR-guided RT neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Front Oncol 12:831712. https://doi.org/10.3389/fonc.2022.831712. (PMID: 10.3389/fonc.2022.831712352807998907443)
Simpson G, Jin W, Spieler B et al (2022) Predictive value of delta-radiomics texture features in 0.35 Tesla magnetic resonance setup images acquired during stereotactic ablative radiotherapy of pancreatic cancer. Front Oncol 12:807725. https://doi.org/10.3389/fonc.2022.807725. (PMID: 10.3389/fonc.2022.807725355151299063004)
Xue C, Yuan J, Poon DM et al (2021) Reliability of MRI radiomics features in MR-guided radiotherapy for prostate cancer: repeatability, reproducibility, and within-subject agreement. Med Phys 48:6976–6986. https://doi.org/10.1002/mp.15232. (PMID: 10.1002/mp.1523234562286)
van Timmeren JE, van Elmpt W, Leijenaar RTH et al (2019) Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients: evaluation of the added prognostic value for overall survival and locoregional recurrence. Radiother Oncol 136:78–85. https://doi.org/10.1016/j.radonc.2019.03.032. (PMID: 10.1016/j.radonc.2019.03.032310151336598851)
Qin Q, Shi A, Zhang R et al (2020) Cone-beam CT radiomics features might improve the prediction of lung toxicity after SBRT in stage I NSCLC patients. Thorac Cancer 11:964–972. https://doi.org/10.1111/1759-7714.13349. (PMID: 10.1111/1759-7714.13349320610617113065)
Bosetti DG, Ruinelli L, Piliero MA et al (2020) Cone-beam computed tomography-based radiomics in prostate cancer: a mono-institutional study. Strahlenther Onkol 196:943–951. https://doi.org/10.1007/s00066-020-01677-x. (PMID: 10.1007/s00066-020-01677-x32875372)
Shi L, Rong Y, Daly M et al (2020) Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer. Phys Med Biol 65:015009. https://doi.org/10.1088/1361-6560/ab3247.
Morgan HE, Wang K, Dohopolski M et al (2021) Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: the additive benefit of CT and intra-treatment cone-beam computed tomography features. Quant Imaging Med Surg 11:4781–4796. https://doi.org/10.21037/qims-21-274. (PMID: 10.21037/qims-21-274348881898611459)
Du F, Tang N, Cui Y et al (2020) A novel nomogram model based on cone-beam CT radiomics analysis technology for predicting radiation pneumonitis in esophageal cancer patients undergoing radiotherapy. Front Oncol 10:596013. https://doi.org/10.3389/fonc.2020.596013. (PMID: 10.3389/fonc.2020.596013333920917774595)
Sellami S, Bourbonne V, Hatt M et al (2022) Predicting response to radiotherapy of head and neck squamous cell carcinoma using radiomics from cone-beam CT images. Acta Oncol 61:73–80. https://doi.org/10.1080/0284186X.2021.1983207. (PMID: 10.1080/0284186X.2021.198320734632924)
Iliadou V, Kakkos I, Karaiskos P et al (2022) Early prediction of planning adaptation requirement indication due to volumetric alterations in head and neck cancer radiotherapy: a machine learning approach. Cancers 14:3573. https://doi.org/10.3390/cancers14153573. (PMID: 10.3390/cancers14153573358928319331795)
Zhang R, Cai Z, Luo Y et al (2022) Preliminary exploration of response the course of radiotherapy for stage III non-small cell lung cancer based on longitudinal CT radiomics features. Eur J Radiol Open 9:100391. https://doi.org/10.1016/j.ejro.2021.100391. (PMID: 10.1016/j.ejro.2021.10039134977279)
van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2017) Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncol 56:1537–1543. https://doi.org/10.1080/0284186X.2017.1350285. (PMID: 10.1080/0284186X.2017.135028528826307)
van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2017) Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother Oncol 123:363–369. https://doi.org/10.1016/j.radonc.2017.04.016. (PMID: 10.1016/j.radonc.2017.04.01628506693)
Delgadillo R, Spieler BO, Ford JC et al (2021) Repeatability of CBCT radiomic features and their correlation with CT radiomic features for prostate cancer. Med Phys 48:2386–2399. https://doi.org/10.1002/mp.14787. (PMID: 10.1002/mp.1478733598943)
Bagher-Ebadian H, Siddiqui F, Liu C et al (2017) On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med Phys 44:1755–1770. https://doi.org/10.1002/mp.12188. (PMID: 10.1002/mp.1218828261818)
Fave X, Mackin D, Yang J et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42:6784–6797. https://doi.org/10.1118/1.4934826. (PMID: 10.1118/1.4934826266320365148115)
Wang H, Zhou Y, Wang X et al (2021) Reproducibility and repeatability of CBCT-derived radiomics features. Front Oncol 11:773512. https://doi.org/10.3389/fonc.2021.773512. (PMID: 10.3389/fonc.2021.773512348690158637922)
Gu J, Zhu J, Qiu Q et al (2018) The feasibility study of Megavoltage Computed Tomographic (MVCT) image for texture feature analysis. Front Oncol 8:586. https://doi.org/10.3389/fonc.2018.00586. (PMID: 10.3389/fonc.2018.00586305689186290333)
Scholey JE, Rajagopal A, Vasquez EG et al (2022) Generation of synthetic megavoltage CT for MRI-only radiotherapy treatment planning using a 3D deep convolutional neural network. Med Phys 49:6622–6634. https://doi.org/10.1002/mp.15876. (PMID: 10.1002/mp.1587635870154)
Liang X, Chen L, Nguyen D et al (2019) Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol 64:125002. https://doi.org/10.1088/1361-6560/ab22f9.
Yuan N, Dyer B, Rao S et al (2020) Convolutional neural network enhancement of fast-scan low-dose cone-beam CT images for head and neck radiotherapy. Phys Med Biol 65:035003. https://doi.org/10.1088/1361-6560/ab6240. (PMID: 10.1088/1361-6560/ab6240318420148011532)
Irmak S, Zimmermann L, Georg D et al (2021) Cone beam CT based validation of neural network generated synthetic CTs for radiotherapy in the head region. Med Phys 48:4560–4571. https://doi.org/10.1002/mp.14987. (PMID: 10.1002/mp.1498734028053)
Chen L, Liang X, Shen C et al (2021) Synthetic CT generation from CBCT images via unsupervised deep learning. Phys Med Biol. https://doi.org/10.1088/1361-6560/ac01b6. (PMID: 10.1088/1361-6560/ac01b6347986209311299)
Gao L, Xie K, Wu X et al (2021) Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Radiat Oncol 16:202. https://doi.org/10.1186/s13014-021-01928-w. (PMID: 10.1186/s13014-021-01928-w346495728515667)
Qiu RLJ, Lei Y, Shelton J et al (2021) Deep learning-based thoracic CBCT correction with histogram matching. Biomed Phys Eng Express. https://doi.org/10.1088/2057-1976/ac3055. (PMID: 10.1088/2057-1976/ac3055346540118591620)
Xue X, Ding Y, Shi J et al (2021) Cone Beam CT (CBCT) based synthetic CT generation using deep learning methods for dose calculation of nasopharyngeal carcinoma radiotherapy. Technol Cancer Res Treat 20:15330338211062416. https://doi.org/10.1177/15330338211062415. (PMID: 10.1177/15330338211062415)
Liu J, Yan H, Cheng H et al (2021) CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation. Quant Imaging Med Surg 11:4820–4834. https://doi.org/10.21037/qims-20-1056. (PMID: 10.21037/qims-20-1056348881928611465)
Zhang Y, Yue N, Su M-Y et al (2021) Improving CBCT quality to CT level using deep learning with generative adversarial network. Med Phys 48:2816–2826. https://doi.org/10.1002/mp.14624. (PMID: 10.1002/mp.1462433259647)
Chen L, Liang X, Shen C et al (2020) Synthetic CT generation from CBCT images via deep learning. Med Phys 47:1115–1125. https://doi.org/10.1002/mp.13978. (PMID: 10.1002/mp.1397831853974)
Uh J, Wang C, Acharya S et al (2021) Training a deep neural network coping with diversities in abdominal and pelvic images of children and young adults for CBCT-based adaptive proton therapy. Radiother Oncol 160:250–258. https://doi.org/10.1016/j.radonc.2021.05.006. (PMID: 10.1016/j.radonc.2021.05.00633992626)
Lemus OMD, Wang Y-F, Li F et al (2022) Dosimetric assessment of patient dose calculation on a deep learning-based synthesized computed tomography image for adaptive radiotherapy. J Appl Clin Med Phys 23:e13595. https://doi.org/10.1002/acm2.13595. (PMID: 10.1002/acm2.13595353326469278692)
Wu W, Qu J, Cai J, Yang R (2022) Multiresolution residual deep neural network for improving pelvic CBCT image quality. Med Phys 49:1522–1534. https://doi.org/10.1002/mp.15460. (PMID: 10.1002/mp.1546035034367)
Kurosawa T, Nishio T, Moriya S et al (2020) Feasibility of image quality improvement for high-speed CBCT imaging using deep convolutional neural network for image-guided radiotherapy in prostate cancer. Phys Med 80:84–91. https://doi.org/10.1016/j.ejmp.2020.10.012. (PMID: 10.1016/j.ejmp.2020.10.01233137623)
Thummerer A, Seller Oria C, Zaffino P et al (2021) Clinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer. Med Phys 48:7673–7684. https://doi.org/10.1002/mp.15333. (PMID: 10.1002/mp.1533334725829)
Li Y, Zhu J, Liu Z et al (2019) A preliminary study of using a deep convolution neural network to generate synthesized CT images based on CBCT for adaptive radiotherapy of nasopharyngeal carcinoma. Phys Med Biol 64:145010. https://doi.org/10.1088/1361-6560/ab2770. (PMID: 10.1088/1361-6560/ab277031170699)
Thummerer A, de Jong BA, Zaffino P et al (2020) Comparison of the suitability of CBCT- and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients. Phys Med Biol 65:235036. https://doi.org/10.1088/1361-6560/abb1d6. (PMID: 10.1088/1361-6560/abb1d633179874)
Maspero M, Houweling AC, Savenije MHF et al (2020) A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer. Phys Imaging Radiat Oncol 14:24–31. https://doi.org/10.1016/j.phro.2020.04.002. (PMID: 10.1016/j.phro.2020.04.002334583107807541)
Sibolt P, Andersson LM, Calmels L et al (2021) Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region. Phys Imaging Radiat Oncol 17:1–7. https://doi.org/10.1016/j.phro.2020.12.004. (PMID: 10.1016/j.phro.2020.12.00433898770)
Li R, Roy A, Bice N et al (2021) Managing tumor changes during radiotherapy using a deep learning model. Med Phys 48:5152–5164. https://doi.org/10.1002/mp.14925. (PMID: 10.1002/mp.1492533959978)
Han X, Hong J, Reyngold M et al (2021) Deep-learning-based image registration and automatic segmentation of organs-at-risk in cone-beam CT scans from high-dose radiation treatment of pancreatic cancer. Med Phys 48:3084–3095. https://doi.org/10.1002/mp.14906. (PMID: 10.1002/mp.1490633905539)
Jiang J, Riyahi Alam S, Chen I et al (2021) Deep cross-modality (MR-CT) educed distillation learning for cone beam CT lung tumor segmentation. Med Phys 48:3702–3713. https://doi.org/10.1002/mp.14902. (PMID: 10.1002/mp.1490233905558)
Alam SR, Li T, Zhang P et al (2021) Generalizable cone beam CT esophagus segmentation using physics-based data augmentation. Phys Med Biol 66:065008. https://doi.org/10.1088/1361-6560/abe2eb. (PMID: 10.1088/1361-6560/abe2eb335351998485497)
Liang X, Bibault J-E, Leroy T et al (2021) Automated contour propagation of the prostate from pCT to CBCT images via deep unsupervised learning. Med Phys 48:1764–1770. https://doi.org/10.1002/mp.14755. (PMID: 10.1002/mp.1475533544390)
Schreier J, Genghi A, Laaksonen H et al (2020) Clinical evaluation of a full-image deep segmentation algorithm for the male pelvis on cone-beam CT and CT. Radiother Oncol 145:1–6. https://doi.org/10.1016/j.radonc.2019.11.021. (PMID: 10.1016/j.radonc.2019.11.02131869676)
Åström LM, Behrens CP, Calmels L et al (2022) Online adaptive radiotherapy of urinary bladder cancer with full re-optimization to the anatomy of the day: Initial experience and dosimetric benefits. Radiother Oncol 171:37–42. https://doi.org/10.1016/j.radonc.2022.03.014. (PMID: 10.1016/j.radonc.2022.03.01435358605)
Wang C, Alam RS, Zhang S et al (2020) Predicting spatial esophageal changes in a multimodal longitudinal imaging study via a convolutional recurrent neural network. Phys Med Biol 65:235027. https://doi.org/10.1088/1361-6560/abb1d9. (PMID: 10.1088/1361-6560/abb1d9332450528956374)
Lalonde A, Winey B, Verburg J et al (2020) Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy. Phys Med Biol. https://doi.org/10.1088/1361-6560/ab9fcb. (PMID: 10.1088/1361-6560/ab9fcb325801748920050)
Harms J, Lei Y, Wang T et al (2020) Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy. Med Phys 47:4416–4427. https://doi.org/10.1002/mp.14347. (PMID: 10.1002/mp.1434732579710)
Luximon DC, Ritter T, Fields E et al (2022) Development and interinstitutional validation of an automatic vertebral-body misalignment error detector for cone-beam CT-guided radiotherapy. Med Phys 49:6410–6423. https://doi.org/10.1002/mp.15927. (PMID: 10.1002/mp.1592735962982)
Liang X, Zhao W, Hristov DH et al (2020) A deep learning framework for prostate localization in cone beam CT-guided radiotherapy. Med Phys 47:4233–4240. https://doi.org/10.1002/mp.14355. (PMID: 10.1002/mp.1435532583418)
Fu Y, Wang T, Lei Y et al (2021) Deformable MR-CBCT prostate registration using biomechanically constrained deep learning networks. Med Phys 48:253–263. https://doi.org/10.1002/mp.14584. (PMID: 10.1002/mp.1458433164219)
Zhang S, Lv B, Zheng X et al (2022) Dosimetric study of deep learning-guided ITV prediction in cone-beam CT for lung stereotactic body radiotherapy. Front Public Health 10:860135. https://doi.org/10.3389/fpubh.2022.860135. (PMID: 10.3389/fpubh.2022.860135353924658980420)
Kai Y, Arimura H, Ninomiya K et al (2020) Semi-automated prediction approach of target shifts using machine learning with anatomical features between planning and pretreatment CT images in prostate radiotherapy. J Radiat Res 61:285–297. https://doi.org/10.1093/jrr/rrz105. (PMID: 10.1093/jrr/rrz105319947027246080)
Dohopolski M, Wang K, Morgan H et al (2022) Use of deep learning to predict the need for aggressive nutritional supplementation during head and neck radiotherapy. Radiother Oncol 171:129–138. https://doi.org/10.1016/j.radonc.2022.04.016. (PMID: 10.1016/j.radonc.2022.04.01635461951)
Cusumano D, Placidi L, Teodoli S et al (2020) On the accuracy of bulk synthetic CT for MR-guided online adaptive radiotherapy. Radiol Med 125:157–164. https://doi.org/10.1007/s11547-019-01090-0. (PMID: 10.1007/s11547-019-01090-031591701)
Lenkowicz J, Votta C, Nardini M et al (2022) A deep learning approach to generate synthetic CT in low field MR-guided radiotherapy for lung cases. Radiother Oncol 176:31–38. https://doi.org/10.1016/j.radonc.2022.08.028. (PMID: 10.1016/j.radonc.2022.08.02836063982)
Terpstra ML, Maspero M, d’Agata F et al (2020) Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy. Phys Med Biol 65:155015. https://doi.org/10.1088/1361-6560/ab9358. (PMID: 10.1088/1361-6560/ab935832408295)
Chun J, Zhang H, Gach HM et al (2019) MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Med Phys 46:4148–4164. https://doi.org/10.1002/mp.13717. (PMID: 10.1002/mp.1371731309585)
Olberg S, Chun J, Su Choi B et al (2021) Abdominal synthetic CT reconstruction with intensity projection prior for MRI-only adaptive radiotherapy. Phys Med Biol. https://doi.org/10.1088/1361-6560/ac279e. (PMID: 10.1088/1361-6560/ac279e34530421)
Olberg S, Zhang H, Kennedy WR et al (2019) Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Med Phys 46:4135–4147. https://doi.org/10.1002/mp.13716. (PMID: 10.1002/mp.1371631309586)
Thomas MA, Fu Y, Yang D (2020) Development and evaluation of machine learning models for voxel dose predictions in online adaptive magnetic resonance guided radiation therapy. J Appl Clin Med Phys 21:60–69. https://doi.org/10.1002/acm2.12884. (PMID: 10.1002/acm2.12884323065357386189)
Chen X, Ma X, Yan X et al (2022) Personalized auto-segmentation for magnetic resonance imaging-guided adaptive radiotherapy of prostate cancer. Med Phys 49:4971–4979. https://doi.org/10.1002/mp.15793. (PMID: 10.1002/mp.1579335670079)
Tong N, Gou S, Yang S et al (2019) Shape constrained fully convolutional densenet with adversarial training for multi-organ segmentation on head and neck CT and low field MR images. Med Phys 46:2669–2682. https://doi.org/10.1002/mp.13553. (PMID: 10.1002/mp.13553310021886581189)
Friedrich F, Hörner-Rieber J, Renkamp CK et al (2021) Stability of conventional and machine learning-based tumor auto-segmentation techniques using undersampled dynamic radial bSSFP acquisitions on a 0.35 T hybrid MR-linac system. Med Phys 48:587–596. https://doi.org/10.1002/mp.14659. (PMID: 10.1002/mp.1465933319394)
Kawula M, Hadi I, Nierer L et al (2022) Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation. Med Phys. https://doi.org/10.1002/mp.16056. (PMID: 10.1002/mp.1605636259384)
Chun J, Park JC, Olberg S et al (2022) Intentional deep overfit learning (IDOL): a novel deep learning strategy for adaptive radiation therapy. Med Phys 49:488–496. https://doi.org/10.1002/mp.15352. (PMID: 10.1002/mp.1535234791672)
Liang F, Qian P, Su K-H et al (2018) Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach. Artif Intell Med 90:34–41. https://doi.org/10.1016/j.artmed.2018.07.001. (PMID: 10.1016/j.artmed.2018.07.00130054121)
Eppenhof K, a. J, Maspero M, Savenije MHF, et al (2020) Fast contour propagation for MR-guided prostate radiotherapy using convolutional neural networks. Med Phys 47:1238–1248. https://doi.org/10.1002/mp.13994. (PMID: 10.1002/mp.1399431876300)
Künzel LA, Nachbar M, Hagmüller M et al (2021) First experience of autonomous, un-supervised treatment planning integrated in adaptive MR-guided radiotherapy and delivered to a patient with prostate cancer. Radiother Oncol 159:197–201. https://doi.org/10.1016/j.radonc.2021.03.032. (PMID: 10.1016/j.radonc.2021.03.03233812912)
Hague C, McPartlin A, Lee LW et al (2021) An evaluation of MR based deep learning auto-contouring for planning head and neck radiotherapy. Radiother Oncol 158:112–117. https://doi.org/10.1016/j.radonc.2021.02.018. (PMID: 10.1016/j.radonc.2021.02.01833636229)
Chen Y, Ruan D, Xiao J et al (2020) Fully automated multiorgan segmentation in abdominal magnetic resonance imaging with deep neural networks. Med Phys 47:4971–4982. https://doi.org/10.1002/mp.14429. (PMID: 10.1002/mp.1442932748401)
Huang L, Li M, Gou S et al (2021) Automated segmentation method for low field 3D stomach MRI using transferred learning image enhancement network. Biomed Res Int 2021:6679603. https://doi.org/10.1155/2021/6679603. (PMID: 10.1155/2021/6679603336288067892230)
Luximon DC, Abdulkadir Y, Chow PE et al (2022) Machine-assisted interpolation algorithm for semi-automated segmentation of highly deformable organs. Med Phys 49:41–51. https://doi.org/10.1002/mp.15351. (PMID: 10.1002/mp.1535134783027)
Kajikawa T, Kadoya N, Tanaka S et al (2020) Dose distribution correction for the influence of magnetic field using a deep convolutional neural network for online MR-guided adaptive radiotherapy. Phys Med 80:186–192. https://doi.org/10.1016/j.ejmp.2020.11.002. (PMID: 10.1016/j.ejmp.2020.11.00233189049)
Li M, Shan S, Chandra SS et al (2020) Fast geometric distortion correction using a deep neural network: Implementation for the 1 Tesla MRI-Linac system. Med Phys 47:4303–4315. https://doi.org/10.1002/mp.14382. (PMID: 10.1002/mp.1438232648965)
Cerviño LI, Du J, Jiang SB (2011) MRI-guided tumor tracking in lung cancer radiotherapy. Phys Med Biol 56:3773. https://doi.org/10.1088/0031-9155/56/13/003. (PMID: 10.1088/0031-9155/56/13/00321628775)
Liu L, Shen L, Johansson A et al (2022) Real time volumetric MRI for 3D motion tracking via geometry-informed deep learning. Med Phys 49:6110–6119. https://doi.org/10.1002/mp.15822. (PMID: 10.1002/mp.1582235766221)
Gao Y, Ghodrati V, Kalbasi A et al (2021) Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network-based data augmentation. Med Phys 48:3262–3372. https://doi.org/10.1002/mp.14897. (PMID: 10.1002/mp.1489733908045)
Fiorino C, Gumina C, Passoni P et al (2018) A TCP-based early regression index predicts the pathological response in neo-adjuvant radio-chemotherapy of rectal cancer. Radiother Oncol 128:564–568. https://doi.org/10.1016/j.radonc.2018.06.019. (PMID: 10.1016/j.radonc.2018.06.01930196982)
Salvestrini V, Greco C, Guerini AE et al (2022) The role of feature-based radiomics for predicting response and radiation injury after stereotactic radiation therapy for brain metastases: a critical review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO). Transl Oncol 15:101–275. https://doi.org/10.1016/j.tranon.2021.101275. (PMID: 10.1016/j.tranon.2021.101275)
Chiloiro G, Cusumano D, Boldrini L et al (2022) THUNDER 2: THeragnostic Utilities for Neoplastic DisEases of the Rectum by MRI guided radiotherapy. BMC Cancer 22:67. https://doi.org/10.1186/s12885-021-09158-9. (PMID: 10.1186/s12885-021-09158-9350330088760695)
Tang B, Liu M, Wang B et al (2022) Improving the clinical workflow of a MR-Linac by dosimetric evaluation of synthetic CT. Front Oncol 12:66. (PMID: 10.3389/fonc.2022.920443)
Votta C, Cusumano D, Boldrini L et al (2021) Delivery of online adaptive magnetic resonance guided radiotherapy based on isodose boundaries. Phys Imaging Radiat Oncol 18:78–81. https://doi.org/10.1016/j.phro.2021.05.005. (PMID: 10.1016/j.phro.2021.05.005342584128254198)
Placidi L, Cusumano D, Boldrini L et al (2020) Quantitative analysis of MRI-guided radiotherapy treatment process time for tumor real-time gating efficiency. J Appl Clin Med Phys 21:70–79. https://doi.org/10.1002/acm2.13030. (PMID: 10.1002/acm2.13030330899547701108)
فهرسة مساهمة: Keywords: Artificial intelligence; Deep learning; Image-guided radiation therapy; Machine learning; Radiomics
تواريخ الأحداث: Date Created: 20230923 Date Completed: 20240125 Latest Revision: 20240125
رمز التحديث: 20240125
DOI: 10.1007/s11547-023-01708-4
PMID: 37740838
قاعدة البيانات: MEDLINE
الوصف
تدمد:1826-6983
DOI:10.1007/s11547-023-01708-4