دورية أكاديمية

Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer.

التفاصيل البيبلوغرافية
العنوان: Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer.
المؤلفون: Looi CK; School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia., Foong LC; State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China., Chung FF; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia., Khoo AS; School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.; Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA., Loo EM; AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia., Leong CO; AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.; Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia., Mai CW; State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China. maicw@ucsiuniversity.edu.my.; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia. maicw@ucsiuniversity.edu.my.
المصدر: Cell biology and toxicology [Cell Biol Toxicol] 2023 Dec; Vol. 39 (6), pp. 2501-2526. Date of Electronic Publication: 2023 Sep 27.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 8506639 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6822 (Electronic) Linking ISSN: 07422091 NLM ISO Abbreviation: Cell Biol Toxicol Subsets: MEDLINE
أسماء مطبوعة: Publication: [Cham] : Springer
Original Publication: Princeton, N.J. : Princeton Scientific Publishers, c1984-
مواضيع طبية MeSH: Nasopharyngeal Neoplasms*/genetics , Nasopharyngeal Neoplasms*/pathology , Epstein-Barr Virus Infections*/complications , Epstein-Barr Virus Infections*/genetics , Carcinoma*/genetics , Carcinoma*/metabolism , Carcinoma*/pathology, Humans ; Nasopharyngeal Carcinoma/genetics ; Immune Evasion ; Herpesvirus 4, Human/genetics ; Herpesvirus 4, Human/metabolism ; Epigenesis, Genetic
مستخلص: Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Adeshakin AO, Adeshakin FO, Yan D, Wan X. Regulating histone deacetylase signaling pathways of myeloid-derived suppressor cells enhanced T cell-based immunotherapy. Front Immunol. 2022;13:10. (PMID: 10.3389/fimmu.2022.781660)
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, & Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023;1–29. https://doi.org/10.1007/s10565-023-09818-5.
Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8 T cells. Proc Natl Acad Sci. 2016;113(42):E6467–75. (PMID: 27698133508157310.1073/pnas.1605884113)
Alhamarneh O, Stafford ND, Greenman J. IL10, An independent predictor of outcome in HNSCC patients. Otolaryngol Head Neck Surg. 2008;139(2_Suppl):P90.
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. (PMID: 28878676557232410.3389/fphar.2017.00561)
Bae J, Hideshima T, Tai Y, Song Y, Richardson P, Raje N. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia. 2018;32(9):1932–47. (PMID: 29487385653760910.1038/s41375-018-0062-8)
Bally AP, Austin JW, Boss JM. Genetic and epigenetic regulation of PD-1 expression. J Immunol. 2016;196(6):2431–7. (PMID: 2694508810.4049/jimmunol.1502643)
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7. (PMID: 1638223610.1038/nature04444)
Bauer M, Jasinski-Bergner S, Mandelboim O, Wickenhauser C, Seliger B. Epstein-Barr virus—associated malignancies and immune escape: the role of the tumor microenvironment and tumor cell evasion strategies. Cancers. 2021;13(20):5189. (PMID: 34680337853374910.3390/cancers13205189)
Bhende PM, Seaman WT, Delecluse H, Kenney SC. BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J Virol. 2005;79(12):7338–48. (PMID: 15919888114364010.1128/JVI.79.12.7338-7348.2005)
Bossi P, Chan AT, Even C, Machiels J. ESMO–EURACAN clinical practice guideline update for nasopharyngeal carcinoma: adjuvant therapy and first-line treatment for recurrent/metastatic disease. Ann Oncol. 2022;34(3):247–50. https://doi.org/10.1016/j.annonc.2022.11.011 . (PMID: 10.1016/j.annonc.2022.11.01136529446)
Burr ML, Sparbier CE, Chan KL, Chan Y, Kersbergen A, Lam EY. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36(4):385-401.e8. (PMID: 31564637687628010.1016/j.ccell.2019.08.008)
Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. Semin Immunopathol. 2020;42(2):131–42. https://doi.org/10.1007/s00281-020-00792-2 . (PMID: 10.1007/s00281-020-00792-2322325357174264)
Cao J, Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer. 2020;6(7):580–92. (PMID: 32610068733017710.1016/j.trecan.2020.02.003)
Chakravorty A, Sugden B, Johannsen EC. An epigenetic journey: Epstein-Barr virus transcribes chromatinized and subsequently unchromatinized templates during its lytic cycle. J Virol. 2019;93(8):2247. (PMID: 10.1128/JVI.02247-18)
Chan AT, Tao Q, Robertson KD, Flinn IW, Mann RB, Klencke B. Azacitidine induces demethylation of the Epstein-Barr virus genome in tumors. J Clin Oncol. 2004;22(8):1373–81. (PMID: 1500708510.1200/JCO.2004.04.185)
Chang ET, Ye W, Zeng Y, Adami H. The evolving epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev. 2021;30(6):1035–47. (PMID: 10.1158/1055-9965.EPI-20-1702)
Chau CM, Zhang X, McMahon SB, Lieberman PM. Regulation of Epstein-Barr virus latency type by the chromatin boundary factor CTCF. J Virol. 2006;80(12):5723–32. (PMID: 16731911147258510.1128/JVI.00025-06)
Chen H, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol. 2014;88(3):1703–13. (PMID: 24257606391161110.1128/JVI.02209-13)
Chen Y, Chan AT, Le Q, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. The Lancet. 2019;394(10192):64–80. (PMID: 10.1016/S0140-6736(19)30956-0)
Chen Y, Zhou C, Li H, Li H, Li Y. Identifying key genes for nasopharyngeal carcinoma by prioritized consensus differentially expressed genes caused by aberrant methylation. J Cancer. 2021;12(3):874. (PMID: 33403044777854710.7150/jca.49392)
Cheng T, Grasse L, Shah J, Chandra J. Panobinostat, a pan-histone deacetylase inhibitor: rationale for and application to treatment of multiple myeloma. Drugs Today (Barcelona, Spain: 1998). 2015;51(8):491–504. (PMID: 10.1358/dot.2015.51.8.2362311)
Cheng J, Chen J, Xue K, Wang Z, Yu D. Clinicopathologic and prognostic significance of VEGF, JAK2 and STAT3 in patients with nasopharyngeal carcinoma. Cancer Cell Int. 2018;18(1):1–9. (PMID: 10.1186/s12935-018-0605-0)
Chijioke O, Azzi T, Nadal D, Münz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol. 2013;94(6):1185–90. (PMID: 23812328382860210.1189/jlb.0313173)
Chow LK, Chung DL, Tao L, Chan KF, Tung SY, Ngan RKC. Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma. EBioMedicine. 2022;86:104357. (PMID: 10.1016/j.ebiom.2022.104357)
Dai W, Cheung AKL, Ko JMY, Cheng Y, Zheng H, Ngan RKC. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma. Cancer Med. 2015;4(7):1079–90. (PMID: 25924914452934610.1002/cam4.451)
Dai W, Zheng H, Cheung AKL, & Lung ML. Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chin Clin Oncol. 2016;5(2):16. https://doi.org/10.21037/cco.2016.03.06.
Darr CD, Mauser A, Kenney S. Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol. 2001;75(13):6135–42. (PMID: 1139061511432910.1128/JVI.75.13.6135-6142.2001)
Das D, Karthik N, Taneja R. Crosstalk between inflammatory signaling and methylation in cancer. Front Cell Dev Biol. 2021;9:756458. (PMID: 34901003865222610.3389/fcell.2021.756458)
Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu Y. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Investig. 2014;124(2):687–95. (PMID: 24382348390460110.1172/JCI67313)
Ding S, Gao Y, Lv D, Tao Y, Liu S, Chen C. DNTTIP1 promotes nasopharyngeal carcinoma metastasis via recruiting HDAC1 to DUSP2 promoter and activating ERK signaling pathway. EBioMedicine. 2022;81:104100. (PMID: 35689852918978010.1016/j.ebiom.2022.104100)
Dunn J, Rao S. Epigenetics and immunotherapy: the current state of play. Mol Immunol. 2017;87:227–39. (PMID: 2851109210.1016/j.molimm.2017.04.012)
Ekeuku SO, Etim EP, Pang K, Chin K, Mai C. Vitamin E in the management of pancreatic cancer: a scoping review. World J Gastrointest Oncol. 2023;15(6):943. (PMID: 373891191030299310.4251/wjgo.v15.i6.943)
Epstein MA. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3. (PMID: 1410796110.1016/S0140-6736(64)91524-7)
Erkes DA, Field CO, Capparelli C, Tiago M, Purwin TJ, Chervoneva I. The next-generation BET inhibitor, PLX51107, delays melanoma growth in a CD8-mediated manner. Pigment Cell Melanoma Res. 2019;32(5):687–96. (PMID: 31063649669757110.1111/pcmr.12788)
Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T. EBV-driven LMP1 and IFN-gamma up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget. 2014;5(23):12189–202. https://doi.org/10.18632/oncotarget.2608 . (PMID: 10.18632/oncotarget.2608253610084322961)
Frost TC, Gewurz BE. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Curr Opin Virol. 2018;32:15–23. (PMID: 30227386626379410.1016/j.coviro.2018.08.012)
Gailhouste L, Liew LC, Hatada I, Nakagama H, Ochiya T. Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death Dis. 2018;9(5):1–12. (PMID: 10.1038/s41419-018-0487-z)
Gameiro SR, Malamas AS, Tsang KY, Ferrone S, Hodge JW. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget. 2016;7(7):7390–402. https://doi.org/10.18632/oncotarget.7180 . (PMID: 10.18632/oncotarget.7180268627294884926)
Gan L, Hii L, Wong S, Leong C, Mai C. Molecular mechanisms and potential therapeutic reversal of pancreatic cancer-induced immune evasion. Cancers. 2020;12(7):1872. (PMID: 32664564740894710.3390/cancers12071872)
Gao Y, Tu D, Yang R, Chu C, Hong J, Gao H. Through reducing ROS production, IL-10 suppresses caspase-1-dependent IL-1β maturation, thereby preventing chronic neuroinflammation and neurodegeneration. Int J Mol Sci. 2020;21(2):465. (PMID: 31940754701345510.3390/ijms21020465)
Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53. (PMID: 3041382810.1038/s41416-018-0327-z)
Goltz D, Gevensleben H, Dietrich J, Schroeck F, de Vos L, Droege F. PDCD1 (PD-1) promoter methylation predicts outcome in head and neck squamous cell carcinoma patients. Oncotarget. 2017;8(25):41011–20. https://doi.org/10.18632/oncotarget.17354 . (PMID: 10.18632/oncotarget.17354284875025522222)
Gong L, Kwong DL, Dai W, Wu P, Wang Y, Lee AW, Guan X. The stromal and immune landscape of nasopharyngeal carcinoma and its implications for precision medicine targeting the tumor microenvironment. Front Oncol. 2021;11(744889):3576. https://doi.org/10.3389/fonc.2021.744889 . (PMID: 10.3389/fonc.2021.744889)
Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther. 2010;10(7):997–1008. (PMID: 20645688636111610.1586/era.10.88)
Gray JE, Saltos A, Tanvetyanon T, Haura EB, Creelan B, Antonia SJ. Phase I/Ib study of pembrolizumab plus vorinostat in advanced/metastatic non–small cell lung cancer. Clin Cancer Res. 2019;25(22):6623–32. (PMID: 31409616723479910.1158/1078-0432.CCR-19-1305)
Guo R, Liang JH, Zhang Y, Lutchenkov M, Li Z, Wang Y. Methionine metabolism controls the B-cell EBV epigenome and viral latency. Cell Metab. 2022;34(9):1280–97. https://doi.org/10.1016/j.cmet.2022.08.008 . (PMID: 10.1016/j.cmet.2022.08.008360706819482757)
Gurung P, Li B, Subbarao Malireddi RK, Lamkanfi M, Geiger TL, Kanneganti T. Chronic TLR stimulation controls NLRP3 inflammasome activation through IL-10 mediated regulation of NLRP3 expression and caspase-8 activation. Sci Rep. 2015;5(1):14488. (PMID: 26412089458597410.1038/srep14488)
Hammerschmidt W. The epigenetic life cycle of Epstein-Barr virus. Epstein Barr virus volume 1: one herpes virus: many diseases. 2015;390:103–17. https://doi.org/10.1007/978-3-319-22822-8_6 . (PMID: 10.1007/978-3-319-22822-8_6)
Han Y, Ding Z, Chen B, Liu Y, & Liu Y. A novel inflammatory response–related gene signature improves high-risk survival prediction in patients with head and neck squamous cell carcinoma. Frontiers in Genetics. 2022;13(767166) https://doi.org/10.3389/fgene.2022.767166.
Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey A, Pich D, McInnes IB. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production. J Immunol. 2012;189(8):3795–9. (PMID: 2298408110.4049/jimmunol.1200312)
Hassel JC, Berking C, Schlaak M, Eigentler T, Gutzmer R, Ascierto PA. Results from the phase Ib of the SENSITIZE trial combining domatinostat with pembrolizumab in advanced melanoma patients refractory to prior checkpoint inhibitor therapy. J Clin Oncol. 2021;39(15):9545. https://doi.org/10.1200/JCO.2021.39.15_suppl.9545 . (PMID: 10.1200/JCO.2021.39.15_suppl.9545)
Hu L, Minarovits J, Cao SL, Contreras-Salazar B, Rymo L, Falk K. Variable expression of latent membrane protein in nasopharyngeal carcinoma can be related to methylation status of the Epstein-Barr virus BNLF-1 5′-flanking region. J Virol. 1991;65(3):1558–67. (PMID: 184747123993810.1128/jvi.65.3.1558-1567.1991)
Hu L, Troyanovsky B, Zhang X, Trivedi P, Ernberg I, Klein G. Differences in the immunogenicity of latent membrane protein 1 (LMP1) encoded by Epstein-Barr virus genomes derived from LMP1-positive and -negative nasopharyngeal carcinoma. Can Res. 2000;60(19):5589–93.
Huang X, Zhang Q, Lou Y, Wang J, Zhao X, Wang L. USP22 deubiquitinates CD274 to suppress anticancer immunityUSP22 is a deubiquitinase of CD274. Cancer Immunol Res. 2019;7(10):1580–90. (PMID: 3139941910.1158/2326-6066.CIR-18-0910)
Jiang W, Li Y, Liu N, Sun Y, He Q, Jiang N. 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation. PLoS One. 2014;9(4):e93273. (PMID: 24691157397223110.1371/journal.pone.0093273)
Jiang W, Liu N, Chen XZ, Sun Y, Li B, Ren XY. Genome-wide identification of a methylation gene panel as a prognostic biomarker in nasopharyngeal carcinoma. Mol Cancer Ther. 2015;14(12):2864–73. https://doi.org/10.1158/1535-7163.MCT-15-0260 . (PMID: 10.1158/1535-7163.MCT-15-026026443805)
Jin S, Kudo Y, Horiguchi T. The role of deubiquitinating enzyme in head and neck squamous cell carcinoma. Int J Mol Sci. 2022;24(1):552. (PMID: 36613989982008910.3390/ijms24010552)
Jochum S, Moosmann A, Lang S, Hammerschmidt W, Zeidler R. The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog. 2012;8(5):e1002704. (PMID: 22615564335509310.1371/journal.ppat.1002704)
Ju M, Bi J, Wei Q, Jiang L, Guan Q, Zhang M. Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer. Brief Bioinform. 2021;22(4):bbaa345. (PMID: 3321248310.1093/bib/bbaa345)
Jung Y, Choi H, Kim H, Lee SK. MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1. J Virol. 2014;88(16):9027–37. (PMID: 24899173413630110.1128/JVI.00721-14)
Kaminskas E, Farrell AT, Wang Y, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza™) for injectable suspension. Oncologist. 2005;10(3):176–82. (PMID: 1579322010.1634/theoncologist.10-3-176)
Lao TD, Truong PK, Thieu HH, Nguyen DH, Nguyen MT, Le T. Simultaneously both expression of and methylation of: molecular biomarker in stage IV of nasopharyngeal carcinoma patients. Balkan J Med Genet. 2021;24(1):57–66. (PMID: 34447660836646810.2478/bjmg-2021-0005)
Lee J, Ahn E, Kissick HT, Ahmed R. Reinvigorating exhausted T cells by blockade of the PD-1 pathway. Onco Therapeutics. 2015;6(1–2):7–17. https://doi.org/10.1615/ForumImmunDisTher.2015014188 . (PMID: 10.1615/ForumImmunDisTher.2015014188)
Lee JJ, Sun W, Bahary N, Ohr J, Rhee JC, Stoller RG. Phase 2 study of pembrolizumab in combination with azacitidine in subjects with metastatic colorectal cancer. J Clin Oncol. 2017;35(15):3054. https://doi.org/10.1200/JCO.2017.35.15_suppl.3054 . (PMID: 10.1200/JCO.2017.35.15_suppl.3054)
Li H, Chiappinelli KB, Guzzetta AA, Easwaran H, Yen RW, Vatapalli R. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014;5(3):587–98. https://doi.org/10.18632/oncotarget.1782 . (PMID: 10.18632/oncotarget.1782245838223996658)
Li X, Zhang Y, Chen M, Mei Q, Liu Y, Feng K. Increased IFNgamma(+) T cells are responsible for the clinical responses of low-dose DNA-demethylating agent decitabine antitumor therapy. Clin Cancer Res : an Official Journal of the American Association for Cancer Research. 2017a;23(20):6031–43. https://doi.org/10.1158/1078-0432.CCR-17-1201 . (PMID: 10.1158/1078-0432.CCR-17-1201)
Li Y, Min D, Wang K, Yin S, Zheng H, Liu L. MicroRNA-152 inhibits cell proliferation, migration and invasion by directly targeting MAFB in nasopharyngeal carcinoma. Mol Med Rep. 2017b;15(2):948–56. (PMID: 2800088510.3892/mmr.2016.6059)
Li N, Yang L, Qi X, Lin Y, Xie X, He G. BET bromodomain inhibitor JQ1 preferentially suppresses EBV-positive nasopharyngeal carcinoma cells partially through repressing c-Myc. Cell Death Dis. 2018;9(7):761. (PMID: 29988031603779210.1038/s41419-018-0789-1)
Li W, Lv S, Liu G, Liang H, Xia W, Xiang Y. Age-dependent changes of gender disparities in nasopharyngeal carcinoma survival. Biol Sex Differ. 2021a;12(1):1–10. (PMID: 10.1186/s13293-021-00361-8)
Li X, Su X, Liu R, Pan Y, Fang J, Cao L. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene. 2021b;40(10):1836–50. (PMID: 33564072794663810.1038/s41388-020-01636-x)
Liew K, Yu GQS, Pua LJW, Wong LZ, Tham SY, Hii L. Parallel genome-wide RNAi screens identify lymphocyte-specific protein tyrosine kinase (LCK) as a targetable vulnerability of cell proliferation and chemoresistance in nasopharyngeal carcinoma. Cancer Lett. 2021;504:81–90. (PMID: 3358798010.1016/j.canlet.2021.02.006)
Lin W, Xu Y, Gao J, Zhang H, Sun Y, Qiu X. Multi-omics data analyses identify B7–H3 as a novel prognostic biomarker and predict response to immune checkpoint blockade in head and neck squamous cell carcinoma. Front Immunol. 2021;12(757047):4112. https://doi.org/10.3389/fimmu.2021.757047 . (PMID: 10.3389/fimmu.2021.757047)
Liu Y, Wang C, Li X, Dong L, Yang Q, Chen M. Improved clinical outcome in a randomized phase II study of anti-PD-1 camrelizumab plus decitabine in relapsed/refractory Hodgkin lymphoma. J Immunother Cancer. 2021;9(4) https://doi.org/10.1136/jitc-2021-002347.
Lizardo DY, Kuang C, Hao S, Yu J, Huang Y, Zhang L. 2020 Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: from bench to bedside. Biochimica Et Biophysica Acta (BBA)-Reviews on Cancer. 1874;2:188447.
Lo K, Huang DP. Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12(6):451–62. https://doi.org/10.1016/s1044579x02000883 . (PMID: 10.1016/s1044579x0200088312450731)
Lo K, Kwong J, Hui AB, Chan SY, To K, Chan AS. High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Can Res. 2001;61(10):3877–81.
Lo K, Chung GT, To K. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol. 2012;22(2):79–86. https://doi.org/10.1016/j.semcancer.2011.12.011 . (PMID: 10.1016/j.semcancer.2011.12.01122245473)
Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, & Hayward SD. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci United States Am. 2007;104(41):16164–16169. 0702896104 [pii].
Looi C, Chung FF, Leong C, Wong S, Rosli R, Mai C. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res. 2019;38(1):162. (PMID: 30987642646364610.1186/s13046-019-1153-8)
Looi C, Hii L, Ngai SC, Leong C, Mai C. The role of Ras-associated protein 1 (Rap1) in cancer: bad actor or good player? Biomedicines. 2020;8(9):334. (PMID: 32906721755547410.3390/biomedicines8090334)
Looi CK, Hii L, Chung FF, Mai C, Lim W, Leong C. Roles of inflammasomes in Epstein-Barr virus-associated nasopharyngeal cancer. Cancers. 2021;13(8):1786. (PMID: 33918087806934310.3390/cancers13081786)
Lu Y, Qin Z, Wang J, Zheng X, Lu J, Zhang X. Epstein-Barr virus miR-BART6-3p inhibits the RIG-I pathway. J Innate Immun. 2017;9(6):574–86. (PMID: 2887752710.1159/000479749)
Lu Z, Du M, Qian L, Zhang N, Gu J, Ding K. MiR-152 functioning as a tumor suppressor that interacts with DNMT1 in nasopharyngeal carcinoma. Onco Targets Ther. 2018;11:1733–41. https://doi.org/10.2147/OTT.S154464 . (PMID: 10.2147/OTT.S154464296287665877490)
Lu Z, Zou J, Li S, Topper MJ, Tao Y, Zhang H. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579(7798):284–90. (PMID: 32103175876508510.1038/s41586-020-2054-x)
Lung RW, Tong JH, Sung Y, Leung P, Ng DC, Chau S. Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia. 2009;11(11):1174-IN17.
Luo N, Nixon MJ, Gonzalez-Ericsson PI, Sanchez V, Opalenik SR, Li H. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat Commun. 2018a;9(1):1–11.
Luo X, Hong L, Cheng C, Li N, Zhao X, Shi F. DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis. 2018b;9(6):619. (PMID: 29795311596639910.1038/s41419-018-0662-2)
Lupey-Green LN, Caruso LB, Madzo J, Martin KA, Tan Y, Hulse M, Tempera I. PARP1 stabilizes CTCF binding and chromatin structure to maintain Epstein-Barr virus latency type. J Virol. 2018;92(18):755. (PMID: 10.1128/JVI.00755-18)
Lyu M, Yi X, Huang Z, Chen Y, Ai Z, Liang Y. A transcriptomic analysis based on aberrant methylation levels revealed potential novel therapeutic targets for nasopharyngeal carcinoma. Annal Transl Med. 2022;10(2):47. https://doi.org/10.21037/atm-21-6628 . (PMID: 10.21037/atm-21-6628)
Ma H, Gao W, Sun X, & Wang W. STAT5 and TET2 cooperate to regulate FOXP3-TSDR demethylation in CD4 T cells of patients with colorectal cancer. J Immunol Res. 2018;2018(6985031) https://doi.org/10.1155/2018/6985031.
Maeda N, Yoshimura K, Yamamoto S, Kuramasu A, Inoue M, Suzuki N. Expression of B7–H3, a potential factor of tumor immune evasion in combination with the number of regulatory T cells, affects against recurrence-free survival in breast cancer patients. Ann Surg Oncol. 2014;21:546–54. (PMID: 423660710.1245/s10434-014-3564-2)
Makowska A, Lelabi N, Nothbaum C, Shen L, Busson P, Tran TTB. Radiotherapy combined with PD-1 inhibition increases NK cell cytotoxicity towards nasopharyngeal carcinoma cells. Cells. 2021;10(9):2458. (PMID: 34572108847014310.3390/cells10092458)
Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25(1):84–90. (PMID: 1721140710.1038/nbt1272)
Mesia R, Bossi P, Hansen AR, Hsieh C, Licitra LF, Tan E. Phase II study of CC-486 (oral azacitidine) in previously treated patients with locally advanced or metastatic nasopharyngeal carcinoma. Eur J Cancer. 2019;123:138–45. (PMID: 3169832710.1016/j.ejca.2019.10.002)
Minarovits J. Epigenotypes of latent herpesvirus genomes. DNA Methylation: Development, Genetic Disease and Cancer. 2006;310:61–80. https://doi.org/10.1007/3-540-31181-5_5 . (PMID: 10.1007/3-540-31181-5_5)
Murata T. Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol. 2014;58(6):307–17. (PMID: 2478649110.1111/1348-0421.12155)
Murata T, Tsurumi T. Epigenetic modification of the Epstein-Barr virus BZLF1 promoter regulates viral reactivation from latency. Front Genet. 2013;4:53. (PMID: 23577022362053110.3389/fgene.2013.00053)
Murata T, Kondo Y, Sugimoto A, Kawashima D, Saito S, Isomura H. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J Virol. 2012;86(9):4752–61. (PMID: 22357272334733010.1128/JVI.06768-11)
Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, Kimura H. Molecular basis of Epstein-Barr virus latency establishment and lytic reactivation. Viruses. 2021;13(12):2344. https://doi.org/10.3390/v13122344 . (PMID: 10.3390/v13122344349606138706188)
Nawaz I, Moumad K, Martorelli D, Ennaji MM, Zhou X, Zhang Z. Detection of nasopharyngeal carcinoma in Morocco (North Africa) using a multiplex methylation-specific PCR biomarker assay. Clin Epigenetics. 2015;7:1–12. (PMID: 10.1186/s13148-015-0119-8)
Nie J, Wang C, Liu Y, Yang Q, Mei Q, Dong L. Addition of low-dose decitabine to anti–PD-1 antibody camrelizumab in relapsed/refractory classical hodgkin lymphoma. J Clin Oncol. 2019;37(17):1479–89. (PMID: 3103905210.1200/JCO.18.02151)
Nikbakht N, Tiago M, Erkes DA, Chervoneva I, Aplin AE. BET inhibition modifies melanoma infiltrating T cells and enhances response to PD-L1 blockade. J Invest Dermatol. 2019;139(7):1612. (PMID: 30703359659107710.1016/j.jid.2018.12.024)
O’Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33(23):2492. (PMID: 26101246508731210.1200/JCO.2014.59.2782)
Oweida A, Hararah MK, Phan A, Binder D, Bhatia S, Lennon S. Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3 upregulation and regulatory T-cell infiltration. Clin Cancer Res. 2018;24(21):5368–80. (PMID: 30042205688639110.1158/1078-0432.CCR-18-1038)
Pan Y, Wang S, Su B, Zhou F, Zhang R, Xu T. Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression. Oncogene. 2017;36(8):1069–79. (PMID: 2752441410.1038/onc.2016.271)
Pang K, Mai C, Chin K. Molecular mechanism of tocotrienol-mediated anticancer properties: a systematic review of the involvement of endoplasmic reticulum stress and unfolded protein response. Nutrients. 2023;15(8):1854. (PMID: 371110761014577310.3390/nu15081854)
Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527(7577):249–53. (PMID: 26503055477905310.1038/nature15520)
Peng H, Chen Y, Gong P, Cai L, Lyu X, Jiang Q. Higher methylation intensity induced by EBV LMP1 via NF-kappaB/DNMT3b signaling contributes to silencing of PTEN gene. Oncotarget. 2016;7(26):40025–37. https://doi.org/10.18632/oncotarget.9474 . (PMID: 10.18632/oncotarget.9474272230695129989)
Perri F, Bosso D, Buonerba C, Lorenzo GD, Scarpati GDV. Locally advanced nasopharyngeal carcinoma: current and emerging treatment strategies. World J Clin Oncol. 2011;2(12):377–83. https://doi.org/10.5306/wjco.v2.i12.377 . (PMID: 10.5306/wjco.v2.i12.377221712803235656)
Pfister DG, Spencer S, Adelstein D, Adkins D, Anzai Y, Brizel DM. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Network. 2020;18(7):873–98. (PMID: 10.6004/jnccn.2020.0031)
Piekarz RL, Frye R, Prince HM, Kirschbaum MH, Zain J, Allen SL. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood J Am Soc Hematol. 2011;117(22):5827–34.
Png YT, Yang AZY, Lee MY, Chua MJM, Lim CM. The role of NK cells in EBV infection and EBV-associated NPC. Viruses. 2021;13(2):300. (PMID: 33671917791897510.3390/v13020300)
Pua LJW, Mai C, Chung FF, Khoo AS, Leong C, Lim W, Hii L. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int J Mol Sci. 2022;23(3):1108. (PMID: 35163030883485010.3390/ijms23031108)
Qu Y, Jin S, Zhang A, Zhang B, Shi X, Wang J, Zhao Y. Gamma-ray resistance of regulatory CD4 CD25 Foxp3 T cells in mice. Radiat Res. 2010;173(2):148–57. (PMID: 2009584610.1667/RR0978.1)
Raedler LA. Farydak (Panobinostat): first HDAC inhibitor approved for patients with relapsed multiple myeloma. Am Health Drug Benefits. 2016;9(Spec Feature):84. (PMID: 276680505013857)
Ramayanti O, Juwana H, Verkuijlen SA, Adham M, Pegtel MD, Greijer AE, Middeldorp JM. Epstein-Barr virus mRNA profiles and viral DNA methylation status in nasopharyngeal brushings from nasopharyngeal carcinoma patients reflect tumor origin. Int J Cancer. 2017;140(1):149–62. (PMID: 2760002710.1002/ijc.30418)
Raneros AB, Bernet CR, Flórez AB, Suarez-Alvarez B. An epigenetic insight into NLRP3 inflammasome activation in inflammation-related processes. Biomedicines. 2021;9(11):1614. (PMID: 34829842861548710.3390/biomedicines9111614)
Ren Y, Yang J, Sun R, Zhang L, Zhao L, Li B. Viral IL-10 down-regulates the “MHC-I antigen processing operon” through the NF-κB signaling pathway in nasopharyngeal carcinoma cells. Cytotechnology. 2016;68:2625–36. (PMID: 27650182510133310.1007/s10616-016-9987-9)
Ren Y, Yang J, Li M, Huang N, Chen Y, Wu X. Viral IL-10 promotes cell proliferation and cell cycle progression via JAK2/STAT3 signaling pathway in nasopharyngeal carcinoma cells. Biotechnol Appl Biochem. 2020;67(6):929–38. (PMID: 3173794710.1002/bab.1856)
Rodriguez CP, Wu QV, Voutsinas J, Fromm JR, Jiang X, Pillarisetty VG. A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clin Cancer Res : an Official Journal of the American Association for Cancer Research. 2020;26(4):837–45. https://doi.org/10.1158/1078-0432.CCR-19-2214 . (PMID: 10.1158/1078-0432.CCR-19-2214)
Rojas JM, Avia M, Martín V, & Sevilla N. IL-10: a multifunctional cytokine in viral infections. J Immunol Res. 2017;2017(6104054) https://doi.org/10.1155/2017/6104054.
Roussos Torres ET, Rafie C, Wang C, Lim D, Brufsky A, LoRusso P. Phase I study of entinostat and nivolumab with or without ipilimumab in advanced solid tumors (ETCTN-9844) phase I study entinostat, nivolumab, ipilimumab. Clin Cancer Res. 2021;27(21):5828–37. (PMID: 3413502110.1158/1078-0432.CCR-20-5017)
Saba HI. Decitabine in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag. 2007;3(5):807–17. (PMID: 184730052376088)
Salamon D, Takacs M, Ujvari D, Uhlig J, Wolf H, Minarovits J, Niller HH. Protein-DNA binding and CpG methylation at nucleotide resolution of latency-associated promoters Qp, Cp, and LMP1p of Epstein-Barr virus. J Virol. 2001;75(6):2584–96. (PMID: 1122268111588110.1128/JVI.75.6.2584-2596.2001)
Salek-Ardakani S, Arrand JR, Mackett M. Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology. 2002;304(2):342–51. (PMID: 1250457410.1006/viro.2002.1716)
Saltos AN, Tanvetyanon T, Creelan BC, Shafique MR, Antonia SJ, Haura EB. 2020 Phase II randomized trial of first-line pembrolizumab and vorinostat in patients with metastatic NSCLC (mNSCLC). J Clin Oncol. 2020;38(15):9567. https://doi.org/10.1200/JCO.2020.38.15_suppl.9567 . (PMID: 10.1200/JCO.2020.38.15_suppl.9567)
Schaefer BC, Strominger JL, Speck SH. Host-cell-determined methylation of specific Epstein-Barr virus promoters regulates the choice between distinct viral latency programs. Mol Cell Biol. 1997;17(1):364–77. (PMID: 897221723176110.1128/MCB.17.1.364)
Schaeffner M, Mrozek-Gorska P, Buschle A, Woellmer A, Tagawa T, Cernilogar FM. BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Sci Alliance. 2019;2(2):e201800108. https://doi.org/10.26508/lsa.201800108 . (PMID: 10.26508/lsa.201800108309266176441497)
Scott RS. Epstein-Barr virus: a master epigenetic manipulator. Curr Opin Virol. 2017;26:74–80. (PMID: 28780440574286210.1016/j.coviro.2017.07.017)
Sharma BR, Kanneganti T. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021;22(5):550–9. (PMID: 33707781813257210.1038/s41590-021-00886-5)
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36. (PMID: 1975200710.1093/carcin/bgp220)
Shen X, He Z, Li H, Yao C, Zhang Y, He L. Distinct functional patterns of gene promoter hypomethylation and hypermethylation in cancer genomes. PLoS One. 2012;7(9):e44822. https://doi.org/10.1371/journal.pone.0044822 . (PMID: 10.1371/journal.pone.0044822229703113436878)
Shen Y, Zhang S, Sun R, Wu T, Qian J. Understanding the interplay between host immunity and Epstein-Barr virus in NPC patients. Emerg Microbes Infect. 2015;4(1):1–9. (PMID: 10.1038/emi.2015.20)
Sim W, Lim W, Hii L, Leong C, Mai C. Targeting pancreatic cancer immune evasion by inhibiting histone deacetylases. World J Gastroenterol. 2022;28(18):1934. (PMID: 35664961915005410.3748/wjg.v28.i18.1934)
Singh S, Banerjee S. Downregulation of HLA-ABC expression through promoter hypermethylation and downmodulation of MIC-A/B surface expression in LMP2A-positive epithelial carcinoma cell lines. Sci Rep. 2020;10(1):1–12.
Son KS, Kang H, Kim SJ, Jung S, Min SY, Lee SY. Hypomethylation of the interleukin-10 gene in breast cancer tissues. The Breast. 2010;19(6):484–8. (PMID: 2064692410.1016/j.breast.2010.05.011)
Stathis A, Bertoni F. BET proteins as targets for anticancer treatmentanticancer therapy using BET inhibitors. Cancer Discov. 2018;8(1):24–36. (PMID: 2926303010.1158/2159-8290.CD-17-0605)
Subklewe M, Paludan C, Tsang ML, Mahnke K, Steinman RM, Münz C. Dendritic cells cross-present latency gene products from Epstein-Barr virus–transformed B cells and expand tumor-reactive CD8 killer T cells. J Exp Med. 2001;193(3):405–12. (PMID: 11157061219592510.1084/jem.193.3.405)
Sun W, Chen L, Tang J, Zhang C, Wen Y, Wen W. Targeting EZH2 depletes LMP1-induced activated regulatory T cells enhancing antitumor immunity in nasopharyngeal carcinoma. J Cancer Res Ther. 2020;16(2):309–19. (PMID: 3247451810.4103/jcrt.JCRT_986_19)
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2021;71(3):209–49. (PMID: 33538338)
Tang J, Pan R, Xu L, Ma Q, Ying X, Zhao J. IL10 hypomethylation is associated with the risk of gastric cancer. Oncol Lett. 2021;21(4):1. (PMID: 10.3892/ol.2021.12502)
Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF. The Epstein-Barr virus major latent promoter Qp is constitutively active, hypomethylated, and methylation sensitive. J Virol. 1998;72(9):7075–83. (PMID: 969680010992810.1128/JVI.72.9.7075-7083.1998)
Tempera I, Wiedmer A, Dheekollu J, Lieberman PM. CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog. 2010;6(8):e1001048. (PMID: 20730088292115410.1371/journal.ppat.1001048)
Terranova-Barberio M, Pawlowska N, Dhawan M, Moasser M, Chien AJ, Melisko ME. Exhausted T cell signature predicts immunotherapy response in ER-positive breast cancer. Nat Commun. 2020;11(1):3584. (PMID: 32681091736788510.1038/s41467-020-17414-y)
Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell. 2018;33(4):547–62. (PMID: 29634943711650810.1016/j.ccell.2018.03.012)
Torres ER, Leatherman J, Rafie C, Brufsky A, LoRusso P, Eder JP. 964MO Entinostat, nivolumab and ipilimumab in advanced HER2-negative breast cancer (ETCTN-9844). Ann Oncol. 2021;32:S833. (PMID: 10.1016/j.annonc.2021.08.1349)
Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B. Upregulation of PD-1 expression on HIV-specific CD8 T cells leads to reversible immune dysfunction. Nat Med. 2006;12(10):1198–202. (PMID: 1691748910.1038/nm1482)
Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VMY, Zhang G, Lo KW. Etiological factors of nasopharyngeal carcinoma. Oral Oncol. 2014;50(5):330–8. (PMID: 2463025810.1016/j.oraloncology.2014.02.006)
Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans Royal Soc b: Biological Sciences. 2017;372(1732):20160270. (PMID: 559773710.1098/rstb.2016.0270)
Wang L, Liu Y, Han R, Beier UH, Thomas RM, Wells AD, Hancock WW. Mbd2 promotes foxp3 demethylation and T-regulatory-cell function. Mol Cell Biol. 2013;33(20):4106–15. (PMID: 381167910.1128/MCB.00144-13)
Wang D, Quiros J, Mahuron K, Pai C, Ranzani V, Young A. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 2018;23(11):3262–74. (PMID: 29898397609495210.1016/j.celrep.2018.05.050)
Wang Y, Sun Q, Mu N, Sun X, Wang Y, Fan S. The deubiquitinase USP22 regulates PD-L1 degradation in human cancer cells. Cell Commun Signal. 2020;18:1–13. (PMID: 10.1186/s12964-020-00612-y)
Wang C, Liu Y, Dong L, Li X, Yang Q, Brock MV. Efficacy of decitabine plus anti-PD-1 camrelizumab in patients with Hodgkin lymphoma who progressed or relapsed after PD-1 blockade monotherapy. Clin Cancer Res : an Official Journal of the American Association for Cancer Research. 2021a;27(10):2782–91. https://doi.org/10.1158/1078-0432.CCR-21-0133 . (PMID: 10.1158/1078-0432.CCR-21-0133)
Wang M, Qi B, Wang F, Lin Z, Li M, Yin W. PBK phosphorylates MSL1 to elicit epigenetic modulation of CD276 in nasopharyngeal carcinoma. Oncogenesis. 2021b;10(1):9. (PMID: 33431797780151910.1038/s41389-020-00293-9)
Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Can Res. 1994;54(7):1766–71.
Weber JS, Laino AS, Vassallo M, Pavlick A, Malatyali S, Krishnarajapet S. Preclinical and clinical studies of a class I/IV HDAC inhibitor, mocetinostat, in melanoma. J Clin Oncol. 2020;38(15):10052–10052. https://doi.org/10.1200/JCO.2020.38.15_suppl.10052 . (PMID: 10.1200/JCO.2020.38.15_suppl.10052)
Wei M, Wang L, Wu T, Xi J, Han Y, Yang X. NLRP3 activation was regulated by DNA methylation modification during Mycobacterium tuberculosis infection. BioMed Res Int. 2016;2016(4323281) https://doi.org/10.1155/2016/4323281.
Westhoff Smith D, Chakravorty A, Hayes M, Hammerschmidt W, Sugden B. The Epstein-Barr virus oncogene EBNA1 suppresses natural killer cell responses and apoptosis early after infection of peripheral B cells. Mbio. 2021;12(6):2243. (PMID: 10.1128/mBio.02243-21)
Williams H, McAulay K, Macsween KF, Gallacher NJ, Higgins CD, Harrison N. The immune response to primary EBV infection: a role for natural killer cells. Br J Haematol. 2005;129(2):266–74. (PMID: 1581385510.1111/j.1365-2141.2005.05452.x)
Wilson AG. Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol. 2008;79:1514–9. (PMID: 1867300510.1902/jop.2008.080172)
Woellmer A, Hammerschmidt W. Epstein-Barr virus and host cell methylation: regulation of latency, replication and virus reactivation. Curr Opin Virol. 2013;3(3):260–5. (PMID: 23567077379996510.1016/j.coviro.2013.03.005)
Woellmer A, Arteaga-Salas JM, Hammerschmidt W. BZLF1 governs CpG-methylated chromatin of Epstein-Barr virus reversing epigenetic repression. PLoS Pathog. 2012;8(9):e1002902. (PMID: 22969425343524110.1371/journal.ppat.1002902)
Wong T, Chen S, Zhang M, Chan JY, Gao W. Epstein-Barr virus-encoded microRNA BART7 downregulates major histocompatibility complex class I chain-related peptide A and reduces the cytotoxicity of natural killer cells to nasopharyngeal carcinoma. Oncol Lett. 2018;16(3):2887–92. (PMID: 301278766096257)
Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockadeHDAC inhibition upregulates PD-1 ligands in melanoma. Cancer Immunol Res. 2015;3(12):1375–85. (PMID: 26297712467430010.1158/2326-6066.CIR-15-0077-T)
World Health Organization. IARC monographs on the identification of carcinogenic hazards to humans. Agents Classified by the IARC Monographs. 2020;1–125.
Wu S, Liao X, He Z, Tang L, Chen X, Wang Y, Lin Q. Demographic and clinicopathological characteristics of nasopharyngeal carcinoma and survival outcomes according to age at diagnosis: a population-based analysis. Oral Oncol. 2017;73:83–7. (PMID: 2893908110.1016/j.oraloncology.2017.08.006)
Wu C, Guo E, Ming J, Sun W, Nie X, Sun L. Radiation-induced DNMT3B promotes radioresistance in nasopharyngeal carcinoma through methylation of p53 and p21. Mol Ther-Oncolytics. 2020;17:306–19. (PMID: 32382655720062510.1016/j.omto.2020.04.007)
Xiao J, Li Y, Zhang W, Jiang Y, Du B, Tan Y. miR-34b inhibits nasopharyngeal carcinoma cell proliferation by targeting ubiquitin-specific peptidase 22. Onco Targets Ther. 2016;16(9):1525–34. https://doi.org/10.2147/OTT.S98378 . (PMID: 10.2147/OTT.S98378)
Xu J, Guo Y. A comprehensive analysis of different gene classes in pancreatic cancer: SIGLEC15 may be a promising immunotherapeutic target. Invest New Drugs. 2022;40(1):58–67. (PMID: 3451587810.1007/s10637-021-01176-5)
Xu T, Tang J, Gu M, Liu L, Wei W, Yang H. Recurrent nasopharyngeal carcinoma: a clinical dilemma and challenge. Curr Oncol. 2013;20(5):406–19. (PMID: 10.3747/co.20.1456)
Yang BH, Hagemann S, Mamareli P, Lauer U, Hoffmann U, Beckstette M. Foxp3 T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 2016;9(2):444–57. (PMID: 2630766510.1038/mi.2015.74)
Yang T, Yang Y, Wang Y. Predictive biomarkers and potential drug combinations of epi-drugs in cancer therapy. Clin Epigenetics. 2021;13(1):1–19. (PMID: 10.1186/s13148-021-01098-2)
Yao M, Ohshima K, Suzumiya J, Kume T, Shiroshita T, Kikuchi M. Interleukin-10 expression and cytotoxic-T-cell response in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Int J Cancer. 1997;72(3):398–402. (PMID: 924728010.1002/(SICI)1097-0215(19970729)72:3<398::AID-IJC4>3.0.CO;2-K)
Yaw ACK, Chan EWL, Yap JKY, & Mai CW. The effects of NLRP3 inflammasome inhibition by MCC950 on LPS-induced pancreatic adenocarcinoma inflammation. J Cancer Res Clin Oncol 2020;1–11.
Ye M, Huang T, Ni C, Yang P, Chen S. Diagnostic capacity of RASSF1A promoter methylation as a biomarker in tissue, brushing, and blood samples of nasopharyngeal carcinoma. EBioMedicine. 2017;18:32–40. (PMID: 28396012540518210.1016/j.ebiom.2017.03.038)
Youngblood B, Oestreich KJ, Ha S, Duraiswamy J, Akondy RS, West EE. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8 T cells. Immunity. 2011;35(3):400–12. (PMID: 21943489318346010.1016/j.immuni.2011.06.015)
Zhang W, Han D, Wan P, Pan P, Cao Y, Liu Y. ERK/c-Jun recruits Tet1 to induce Zta expression and Epstein-Barr virus reactivation through DNA demethylation. Sci Rep. 2016;6(1):34543. (PMID: 27708396505258610.1038/srep34543)
Zhang Y, Wang H, Liu Y, Wang C, Wang J, Long C. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed Pharmacother. 2018;102:1003–14. (PMID: 2971051710.1016/j.biopha.2018.03.114)
Zhang X, Lu M, Xu Y, He G, Liu Q, Zhu J. IL-10 promoter hypomethylation is associated with increased IL-10 expression and poor survival in hepatocellular carcinoma. Transl Cancer Res. 2019;8(4):1466. (PMID: 35116889879792510.21037/tcr.2019.07.33)
Zhang R, He Y, Wei B, Lu Y, Zhang J, Zhang N. Nasopharyngeal carcinoma burden and its attributable risk factors in China: estimates and forecasts from 1990 to 2050. Int J Environ Res Public Health. 2023;20(4):2926. (PMID: 36833622996154410.3390/ijerph20042926)
Zheng H, Zhao W, Yan C, Watson CC, Massengill M, Xie M. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinomaHDAC inhibitors augment PD-1 immunotherapy. Clin Cancer Res. 2016;22(16):4119–32. (PMID: 26964571498719610.1158/1078-0432.CCR-15-2584)
Zhong M, Gao R, Zhao R, Huang Y, Chen C, Li K. BET bromodomain inhibition rescues PD-1-mediated T-cell exhaustion in acute myeloid leukemia. Cell Death Dis. 2022;13(8):671. (PMID: 35918330934613810.1038/s41419-022-05123-x)
Zhou W, Jin W. B7–H3/CD276: an emerging cancer immunotherapy. Front Immunol. 2021;12:701006. (PMID: 34349762832680110.3389/fimmu.2021.701006)
Zhou L, Mudianto T, Ma X, Riley R, Uppaluri R. Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti–PD-1 resistance in head and neck cancerEZH2 is a negative regulator of HNSCC antigen presentation. Clin Cancer Res. 2020;26(1):290–300. (PMID: 3156220310.1158/1078-0432.CCR-19-1351)
Zhu J, Li L, Tong J, Hui C, Wong CH, Lo KW. Targeting the polycomb repressive complex-2 related proteins with novel combinational strategies for nasopharyngeal carcinoma. Am J Cancer Res. 2020a;10(10):3267. (PMID: 331632697642668)
Zhu G, Xu C, Ma J. Combination of precision radiotherapy with chemotherapy and immunotherapy in nonrecurrent/metastatic nasopharyngeal carcinoma. Annals of Nasopharynx Cancer. 2020b;4(5):1–20. https://doi.org/10.21037/anpc-20-10 . (PMID: 10.21037/anpc-20-10)
Zong L, Seto Y. CpG island methylator phenotype, Helicobacter pylori, Epstein-Barr virus, and microsatellite instability and prognosis in gastric cancer: a systematic review and meta-analysis. PLoS One. 2014;9(1):e86097. (PMID: 24475075390349710.1371/journal.pone.0086097)
معلومات مُعتمدة: PHMS I-2021 (01) International Medical University; FRGS/1/2022/SKK10/SYUC/02/2 Fundamental Research Grant Scheme; FRGS/1/2022/SKK10/IMU/01/1 Fundamental Research Grant Scheme; REIG-FPS-2023/038 UCSI University Research Excellence & Innovation Grant
فهرسة مساهمة: Keywords: Epigenetics; Epstein-Barr virus; Immune evasion; Nasopharyngeal carcinoma
تواريخ الأحداث: Date Created: 20230927 Date Completed: 20231204 Latest Revision: 20240811
رمز التحديث: 20240813
DOI: 10.1007/s10565-023-09830-9
PMID: 37755585
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6822
DOI:10.1007/s10565-023-09830-9