دورية أكاديمية

Structural, developmental and functional analyses of leaf salt glands of mangrove recretohalophyte Aegiceras corniculatum.

التفاصيل البيبلوغرافية
العنوان: Structural, developmental and functional analyses of leaf salt glands of mangrove recretohalophyte Aegiceras corniculatum.
المؤلفون: Chi BJ; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China., Guo ZJ; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China.; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, 100 Daxue East Road, Nanning 530004, China., Wei MY; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China.; School of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong 253000, China., Song SW; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China., Zhong YH; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China., Liu JW; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China., Zhang YC; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China., Li J; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China., Xu CQ; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China., Zhu XY; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China., Zheng HL; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China.
المصدر: Tree physiology [Tree Physiol] 2024 Feb 06; Vol. 44 (1).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: Canada NLM ID: 100955338 Publication Model: Print Cited Medium: Internet ISSN: 1758-4469 (Electronic) Linking ISSN: 0829318X NLM ISO Abbreviation: Tree Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Oxford University Press
Original Publication: Victoria, [B.C.] : Heron Pub., c1986-
مواضيع طبية MeSH: Primulaceae*/physiology , Salt Gland*, Environment ; Plant Leaves/metabolism ; Sodium Chloride/metabolism
مستخلص: Salt secretion is an important strategy used by the mangrove plant Aegiceras corniculatum to adapt to the coastal intertidal environment. However, the structural, developmental and functional analyses on the leaf salt glands, particularly the salt secretion mechanism, are not well documented. In this study, we investigated the structural, developmental and degenerative characteristics and the salt secretion mechanisms of salt glands to further elucidate the mechanisms of salt tolerance of A. corniculatum. The results showed that the salt gland cells have a large number of mitochondria and vesicles, and plenty of plasmodesmata as well, while chloroplasts were found in the collecting cells. The salt glands developed early and began to differentiate at the leaf primordium stage. We observed and defined three stages of salt gland degradation for the first time in A. corniculatum, where the secretory cells gradually twisted and wrinkled inward and collapsed downward as the salt gland degeneration increased and the intensity of salt gland autofluorescence gradually diminished. In addition, we found that the salt secretion rate of the salt glands increased when the treated concentration of NaCl increased, reaching the maximum at 400 mM NaCl. The salt-secreting capacity of the salt glands of the adaxial epidermis is significantly greater than that of the abaxial epidermis. The real-time quantitative PCR results indicate that SAD2, TTG1, GL2 and RBR1 may be involved in regulating the development of the salt glands of A. corniculatum. Moreover, Na+/H+ antiporter, H+-ATPase, K+ channel and Cl- channel may play important roles in the salt secretion of salt glands. In sum mary, this study strengthens the understanding of the structural, developmental and degenerative patterns of salt glands and salt secretion mechanisms in mangrove recretohalophyte A. corniculatum, providing an important reference for further studies at the molecular level.
(© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.)
معلومات مُعتمدة: 32171740 Natural Science Foundation of China; 2017YFC0506102 National Key Research and Development Program of China
فهرسة مساهمة: Keywords: degeneration; halophyte; ion flux; mangrove plant; salt secretion; salt tolerance
المشرفين على المادة: 451W47IQ8X (Sodium Chloride)
تواريخ الأحداث: Date Created: 20230928 Date Completed: 20240220 Latest Revision: 20240311
رمز التحديث: 20240311
DOI: 10.1093/treephys/tpad123
PMID: 37769324
قاعدة البيانات: MEDLINE
الوصف
تدمد:1758-4469
DOI:10.1093/treephys/tpad123