دورية أكاديمية

Global transcriptome profiling reveals root- and leaf-specific responses of barley ( Hordeum vulgare L.) to H 2 O 2 .

التفاصيل البيبلوغرافية
العنوان: Global transcriptome profiling reveals root- and leaf-specific responses of barley ( Hordeum vulgare L.) to H 2 O 2 .
المؤلفون: Bhattacharyya S; Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany., Giridhar M; Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany.; Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany., Meier B; Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany., Peiter E; Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany., Vothknecht UC; Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany., Chigri F; Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany.
المصدر: Frontiers in plant science [Front Plant Sci] 2023 Sep 12; Vol. 14, pp. 1223778. Date of Electronic Publication: 2023 Sep 12 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101568200 Publication Model: eCollection Cited Medium: Print ISSN: 1664-462X (Print) Linking ISSN: 1664462X NLM ISO Abbreviation: Front Plant Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation, 2010-
مستخلص: In cereal crops, such as barley ( Hordeum vulgare L.), the ability to appropriately respond to environmental cues is an important factor for yield stability and thus for agricultural production. Reactive oxygen species (ROS), such as hydrogen peroxide (H 2 O 2 ), are key components of signal transduction cascades involved in plant adaptation to changing environmental conditions. H 2 O 2 -mediated stress responses include the modulation of expression of stress-responsive genes required to cope with different abiotic and biotic stresses. Despite its importance, knowledge of the effects of H 2 O 2 on the barley transcriptome is still scarce. In this study, we identified global transcriptomic changes induced after application of 10 mM H 2 O 2 to five-day-old barley plants. In total, 1883 and 1001 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Most of these DEGs were organ-specific, with only 209 DEGs commonly regulated and 37 counter-regulated between both plant parts. A GO term analysis further confirmed that different processes were affected in roots and leaves. It revealed that DEGs in leaves mostly comprised genes associated with hormone signaling, response to H 2 O 2 and abiotic stresses. This includes many transcriptions factors and small heat shock proteins. DEGs in roots mostly comprised genes linked to crucial aspects of H 2 O 2 catabolism and oxidant detoxification, glutathione metabolism, as well as cell wall modulation. These categories include many peroxidases and glutathione transferases. As with leaves, the H 2 O 2 response category in roots contains small heat shock proteins, however, mostly different members of this family were affected and they were all regulated in the opposite direction in the two plant parts. Validation of the expression of the selected commonly regulated DEGs by qRT-PCR was consistent with the RNA-seq data. The data obtained in this study provide an insight into the molecular mechanisms of oxidative stress responses in barley, which might also play a role upon other stresses that induce oxidative bursts.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Bhattacharyya, Giridhar, Meier, Peiter, Vothknecht and Chigri.)
References: Plant Mol Biol. 2010 Oct;74(3):215-22. (PMID: 20661628)
Trends Biochem Sci. 2012 Mar;37(3):106-17. (PMID: 22177323)
BMC Plant Biol. 2013 Aug 05;13:109. (PMID: 23915037)
C R Biol. 2011 Feb;334(2):127-39. (PMID: 21333943)
Ann Bot. 2006 Aug;98(2):279-88. (PMID: 16740587)
Front Plant Sci. 2018 Jan 09;8:2212. (PMID: 29375595)
Nat Chem Biol. 2018 Feb;14(2):171-178. (PMID: 29291349)
BMC Genomics. 2019 Apr 29;20(1):325. (PMID: 31035922)
Front Plant Sci. 2019 Jun 25;10:800. (PMID: 31293607)
Planta. 2007 Aug;226(3):629-37. (PMID: 17404756)
BMC Genomics. 2011 May 09;12:216. (PMID: 21554708)
Redox Rep. 2005;10(2):71-8. (PMID: 15949126)
PLoS Genet. 2015 Jul 21;11(7):e1005373. (PMID: 26197346)
Bioinformatics. 2014 Apr 1;30(7):923-30. (PMID: 24227677)
Front Plant Sci. 2019 Feb 28;10:228. (PMID: 30873200)
Cell. 2016 Oct 6;167(2):313-324. (PMID: 27716505)
Plant Physiol. 2016 Sep;172(1):3-4. (PMID: 27578844)
Plant Cell. 2011 Sep;23(9):3089-100. (PMID: 21963667)
BMC Genomics. 2007 May 22;8:125. (PMID: 17519032)
EMBO J. 2017 Oct 2;36(19):2844-2855. (PMID: 28838936)
Front Plant Sci. 2015 Feb 17;6:74. (PMID: 25741355)
J Plant Physiol. 2015 Mar 15;176:192-201. (PMID: 25638402)
Funct Plant Biol. 2003 Oct;30(9):955-963. (PMID: 32689080)
Front Plant Sci. 2014 Dec 04;5:685. (PMID: 25538719)
Plant Physiol. 2001 Sep;127(1):159-72. (PMID: 11553744)
Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10205-10. (PMID: 15199185)
Front Plant Sci. 2015 Jun 16;6:420. (PMID: 26136756)
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1711-6. (PMID: 21220338)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Plants (Basel). 2020 Oct 17;9(10):. (PMID: 33080882)
J Exp Bot. 2006;57(5):1025-43. (PMID: 16510517)
J Exp Bot. 2013 Aug;64(11):3201-12. (PMID: 23918963)
Front Plant Sci. 2022 Sep 21;13:913856. (PMID: 36212318)
J Biol Chem. 2007 Jan 12;282(2):1183-92. (PMID: 17105724)
Nat Protoc. 2012 Mar 01;7(3):562-78. (PMID: 22383036)
New Phytol. 2016 Mar;209(4):1395-402. (PMID: 26542837)
Plants (Basel). 2020 Apr 10;9(4):. (PMID: 32290272)
Phytochemistry. 2015 Apr;112:22-32. (PMID: 25446232)
Int J Mol Sci. 2019 Oct 25;20(21):. (PMID: 31731530)
Sci Rep. 2019 Feb 26;9(1):2743. (PMID: 30808876)
PLoS One. 2019 Dec 17;14(12):e0226423. (PMID: 31846477)
Plant Cell Physiol. 2016 Jul;57(7):1364-1376. (PMID: 27081099)
Plant Physiol. 2019 Jul;180(3):1629-1646. (PMID: 31064811)
Trends Plant Sci. 2011 Jun;16(6):300-9. (PMID: 21482172)
Nature. 2000 Aug 17;406(6797):731-4. (PMID: 10963598)
Front Plant Sci. 2015 Nov 17;6:999. (PMID: 26635827)
Plant Cell Environ. 2016 Mar;39(3):628-44. (PMID: 26436309)
Mol Plant. 2008 Jan;1(1):75-83. (PMID: 20031916)
Plant Cell. 2009 Jan;21(1):131-45. (PMID: 19151223)
FEBS Lett. 2006 May 29;580(13):3136-44. (PMID: 16684525)
Plant J. 2005 Jan;41(2):212-20. (PMID: 15634198)
Int J Mol Sci. 2021 Jul 24;22(15):. (PMID: 34360680)
Front Plant Sci. 2016 Apr 28;7:570. (PMID: 27200043)
Proc Natl Acad Sci U S A. 2017 May 16;114(20):5289-5294. (PMID: 28461488)
J Genet Genomics. 2017 Aug 20;44(8):395-404. (PMID: 28869112)
Plant Cell Rep. 2017 Jun;36(6):791-805. (PMID: 28391528)
J Exp Bot. 2005 Aug;56(418):1991-2001. (PMID: 15996987)
Plants (Basel). 2019 Jul 26;8(8):. (PMID: 31357401)
Front Plant Sci. 2019 Mar 12;10:299. (PMID: 30930923)
Bioinformatics. 2020 Apr 15;36(8):2628-2629. (PMID: 31882993)
J Exp Bot. 2007;58(6):1301-12. (PMID: 17314079)
Cell Stress Chaperones. 2008 Summer;13(2):183-97. (PMID: 18369739)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
Phytochemistry. 2009 Sep;70(13-14):1532-8. (PMID: 19703696)
Subcell Biochem. 2013;69:231-55. (PMID: 23821152)
Annu Rev Plant Biol. 2010;61:593-620. (PMID: 20192754)
Plant Physiol. 2006 May;141(1):47-60. (PMID: 16531488)
Sci Rep. 2021 Jan 13;11(1):1154. (PMID: 33441983)
Front Plant Sci. 2013 May 06;4:113. (PMID: 23653629)
J Exp Bot. 2009;60(2):377-90. (PMID: 19073963)
PeerJ. 2019 May 3;7:e6832. (PMID: 31110921)
Cell Motil Cytoskeleton. 1995;30(1):67-72. (PMID: 7728869)
Nature. 2017 Apr 26;544(7651):427-433. (PMID: 28447635)
Plant Cell Physiol. 2020 Dec 23;61(11):1986-1994. (PMID: 32886785)
Plants (Basel). 2023 Jan 17;12(3):. (PMID: 36771514)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
New Phytol. 2019 Feb;221(3):1197-1214. (PMID: 30222198)
J Integr Plant Biol. 2012 Aug;54(8):540-54. (PMID: 22805117)
J Exp Bot. 2022 Nov 19;73(21):7165-7181. (PMID: 36169618)
Int J Mol Sci. 2021 Jul 29;22(15):. (PMID: 34360920)
Bot Stud. 2013 Dec;54(1):26. (PMID: 28510888)
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18843-8. (PMID: 19843695)
Cells. 2022 Apr 12;11(8):. (PMID: 35455982)
BMC Plant Biol. 2016 Apr 14;16:86. (PMID: 27079791)
Z Naturforsch C J Biosci. 2014 May-Jun;69(5-6):226-36. (PMID: 25069161)
Mol Plant. 2013 Jul;6(4):1344-54. (PMID: 23571490)
Crit Rev Biotechnol. 2010 Sep;30(3):161-75. (PMID: 20214435)
J Exp Bot. 2013 Jan;64(2):391-403. (PMID: 23255280)
Front Plant Sci. 2016 Aug 03;7:1137. (PMID: 27536305)
BMC Plant Biol. 2022 Sep 17;22(1):447. (PMID: 36114461)
Plant Cell Rep. 2020 Nov;39(11):1381-1393. (PMID: 32886139)
Int J Mol Sci. 2013 Apr 12;14(4):8000-24. (PMID: 23584021)
BMC Plant Biol. 2016 Jun 10;16(1):131. (PMID: 27286833)
Plant Sci. 2017 Oct;263:55-65. (PMID: 28818384)
Plant Cell Physiol. 2011 Jan;52(1):205-9. (PMID: 21097476)
Front Plant Sci. 2015 Jan 07;5:771. (PMID: 25709610)
Funct Integr Genomics. 2019 Nov;19(6):1007-1022. (PMID: 31359217)
فهرسة مساهمة: Keywords: H2O2; RNA-sequencing; barley; oxidative stress; reactive oxygen species (ROS); stress response; transcriptome profiling
تواريخ الأحداث: Date Created: 20230929 Latest Revision: 20231003
رمز التحديث: 20231003
مُعرف محوري في PubMed: PMC10523330
DOI: 10.3389/fpls.2023.1223778
PMID: 37771486
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-462X
DOI:10.3389/fpls.2023.1223778