دورية أكاديمية

Modeling Gasotransmitter Availability to Brain Capillary Endothelial Cells with Ultrasound-sensitive Microbubbles.

التفاصيل البيبلوغرافية
العنوان: Modeling Gasotransmitter Availability to Brain Capillary Endothelial Cells with Ultrasound-sensitive Microbubbles.
المؤلفون: Jourdain R; Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA., Chivukula VK; Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA., Bashur CA; Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA. cbashur@fit.edu.
المصدر: Pharmaceutical research [Pharm Res] 2023 Oct; Vol. 40 (10), pp. 2399-2411. Date of Electronic Publication: 2023 Oct 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8406521 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-904X (Electronic) Linking ISSN: 07248741 NLM ISO Abbreviation: Pharm Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: Stuttgart ; New York : Thieme, c1984-
مواضيع طبية MeSH: Gasotransmitters*/metabolism, Rats ; Animals ; Humans ; Microbubbles ; Endothelial Cells/metabolism ; Rats, Sprague-Dawley ; Brain/metabolism ; Blood-Brain Barrier/metabolism ; Drug Delivery Systems
مستخلص: Background: Vascular cognitive impairment and dementia results from blood components passing through disrupted blood brain barriers (BBBs). Current treatments can reduce further progress of neuronal damage but do not treat the primary cause. Instead, these treatments typically aim to temporarily disrupt the BBB. Alternatively, this study computationally assessed the feasibility of delivering carbon monoxide (CO) from ultrasound-sensitive microbubbles (MBs) as a strategy to promote BBB repair and integrity. CO can interact with heme-containing compounds within cells and promote cell growth. However, careful dose control is critical for safety and efficacy because CO also binds at high affinity to hemoglobin (Hb).
Methods: Ultrasound activation was simulated at the internal carotid artery, and CO released from the resulting MB rupture was tracked along the shortest path to the BBB for several activation times and doses. The CO dose available to brain capillary endothelial cells (BCECs) was predicted by considering hemodynamics, mass transport, and binding kinetics.
Results: The half-life of CO binding to Hb indicated that CO is available to interact with BCECs for several cardiac cycles. Further, MB and COHb concentrations would not be near toxic levels and free Hb would be available. The axisymmetric model indicated that biologically-relevant CO concentrations will be available to BCECs, and these levels can be sustained with controlled ultrasound activation. A patient-specific geometry shows that while vessel tortuosity provides a heterogeneous response, a relevant CO concentration could still be achieved.
Conclusions: This computational study demonstrates feasibility of the CO / MB strategy, and that controlled delivery is important for viability of this strategy.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Shin JH. Dementia epidemiology fact sheet 2022. Ann Rehabil Med. 2022;46(2):53–9. (PMID: 355089249081392)
Hussain B, Fang C, Chang J. Blood-brain barrier breakdown: an emerging biomarker of cognitive impairment in normal aging and dementia. Front Neurosci. 2021;15: 688090. (PMID: 344896238418300)
Simonsheng S. Internal carotid artery C1 to C7 and M1 to M2. 2020, April 29. https://www.embodi3d.com/profile/27667-simonsheng/ .
Sun MK. Potential therapeutics for vascular cognitive impairment and dementia. Curr Neuropharmacol. 2018;16(7):1036–44. (PMID: 290461536120112)
Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9(1):23. (PMID: 231403023542074)
Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE. The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am. 2011;130(5):3059–67. (PMID: 220879333248062)
Nicodemus NE, Becerra S, Kuhn TP, Packham HR, Duncan J, Mahdavi K, et al. Focused transcranial ultrasound for treatment of neurodegenerative dementia. Alzheimer’s Dement. 2019;5(1):374–81.
Rosenberg GA. Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(7):1139–51. (PMID: 222522353390801)
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of natural polyphenols on oxidative stress-mediated blood-brain barrier dysfunction. Antioxidants (Basel). 2022;11(2).
Hanafy KA, Oh J, Otterbein LE. Carbon Monoxide and the brain: time to rethink the dogma. Curr Pharm Des. 2013;19(15):2771–5. (PMID: 230923213672861)
Nakao A, Choi AMK, Murase N. Protective effect of carbon monoxide in transplantation. J Cell Mol Med. 2006;10(3):650–71. (PMID: 16989726)
Washington KS, Bashur CA. Delivery of antioxidant and anti-inflammatory agents for tissue engineered vascular grafts. Front Pharmacol. 2017;21:8.
Bathoorn E, Slebos DJ, Postma DS, Koeter GH, van Oosterhout AJM, van der Toorn M, et al. Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J. 2007;30(6):1131–7. (PMID: 17715164)
Lee GY, Zeb A, Kim EH, Suh B, Shin YJ, Kim D, et al. CORM-2-entrapped ultradeformable liposomes ameliorate acute skin inflammation in an ear edema model via effective CO delivery. Acta Pharm Sin B. 2020;10(12):2362–73. (PMID: 333545077745126)
Thom SR, Fisher D, Xu YA, Notarfrancesco K, Ischiropoulos H. Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide. Proc Natl Acad Sci. 2000;97(3):1305–10. (PMID: 1065552615604)
Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9(9):728–43. (PMID: 20811383)
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, et al. CO-releasing materials: an emphasis on therapeutic implications, as release and subsequent cytotoxicity are the part of therapy. Materials. 2019;12(10):1643. (PMID: 311375266566563)
Navarro-Becerra JA, Song KH, Martinez P, Borden MA. Microbubble size and dose effects on pharmacokinetics. ACS Biomater Sci Eng. 2022;8(4):1686–95. (PMID: 353578149175185)
Ryter SW, Choi AMK. Carbon monoxide in exhaled breath testing and therapeutics. J Breath Res. 2013;7(1): 017111. (PMID: 234460633651886)
Otterbein LE, Bach FH, Alam J, Soares M, Tao LuH, Wysk M, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6(4):422–8. (PMID: 10742149)
Izadifar Z, Izadifar Z, Chapman D, Babyn P. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. J Clin Med. 2020;9(2).
Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, et al. Alzheimer’s Disease Cooperative Study. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol. 2012;69(7):836–41.
Fukui K, Kakiuchi Y. The kinetics of the reaction of CO+O2Hb=O2+COHb in human-hemoglobin in solution at a low PCO range. Jpn J Physiol. 1970;20(3):332–47. (PMID: 5311437)
Lee G, Choi S, Kim K, Yun J, Son JS, Jeong S, et al. Association of hemoglobin concentration and its change with cardiovascular and all‐cause mortality. J Am Heart Assoc. 2018;7(3).
Vyas HS, Jadeja RN, Vohra A, Upadhyay KK, Thounaojam MC, Bartoli M, et al. CORM-A1 Alleviates Pro-Atherogenic Manifestations via miR-34a-5p Downregulation and an Improved Mitochondrial Function. Antioxidants. 2023;12(5):997. (PMID: 3723786210215967)
Peng P, Wang C, Shi Z, Johns VK, Ma L, Oyer J, et al. Visible-light activatable organic CO-releasing molecules (PhotoCORMs) that simultaneously generate fluorophores. Org Biomol Chem. 2013;11(39):6671–4. (PMID: 23943038)
Bernardini C, Zannoni A, Bacci ML, Forni M. Protective effect of carbon monoxide pre-conditioning on LPS-induced endothelial cell stress. Cell Stress Chaperones. 2010;15(2):219–24. (PMID: 19693705)
Li Y, Wang H, Yang B, Yang J, Ruan X, Yang Y, et al. Influence of carbon monoxide on growth and apoptosis of human umbilical artery smooth muscle cells and vein endothelial cells. Int J Biol Sci. 2012;8(10):1431–46. (PMID: 231979403509336)
Li DS, Schneewind S, Bruce M, Khaing Z, O’Donnell M, Pozzo L. Spontaneous nucleation of stable perfluorocarbon emulsions for ultrasound contrast agents. Nano Lett. 2019;19(1):173–81. (PMID: 30543289)
Deschamps J, Menz DH, Padua AAH, Costa Gomes MF. Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids. J Chem Thermodyn. 2007;39(6):847–54.
Loskutova K, Nimander D, Gouwy I, Chen H, Ghorbani M, Svagan AJ, et al. A study on the acoustic response of pickering perfluoropentane droplets in different media. ACS Omega. 2021;6(8):5670–8. (PMID: 336816067931408)
Karthikesh MS, Yang X. The effect of ultrasound cavitation on endothelial cells. Exp Biol Med. 2021;246(7):758–70.
Valvita R, Sadi B. Variations of shape, length, branching, and end trunks of M1 segment of middle cerebral artery. J Neurol Neurol Sci Disord. 2019;5(1):052–6.
Vitello DJ, Ripper RM, Fettiplace MR, Weinberg GL, Vitello JM. Blood density is nearly equal to water density: a validation study of the gravimetric method of measuring intraoperative blood loss. J Vet Med. 2015;29(2015):1–4.
Uematsu S, Yang A, Preziosi TJ, Kouba R, Toung TJ. Measurement of carotid blood flow in man and its clinical application. Stroke. 1983;14(2):256–66. (PMID: 6220490)
Kozlova E, Chernysh A, Kozlov A, Sergunova V, Sherstyukova E. Assessment of carboxyhemoglobin content in the blood with high accuracy: wavelength range optimization for nonlinear curve fitting of optical spectra. Heliyon. 2020;6(8): e04622. (PMID: 327938337415840)
Stupfel M, Bouley G. Physiological and biochemical effects on rats and mice exposed to small concentrations of carbon monoxide for long periods. Ann N Y Acad Sci. 1970;174(1 Biological Ef):342–68. (PMID: 5289610)
Michael E, Abeyrathna N, Patel AV, Liao Y, Bashur CA. Incorporation of photo-carbon monoxide releasing materials into electrospun scaffolds for vascular tissue engineering. Biomed Mater. 2016;11(2): 025009. (PMID: 27007251)
Stevenson TH, Gutierrez AF, Alderton WK, Lian L, Scrutton NS. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands. Biochem J. 2001;358(1):201. (PMID: 114855681222048)
Wegiel B, Gallo DJ, Raman KG, Karlsson JM, Ozanich B, Chin BY, et al. Nitric oxide-dependent bone marrow progenitor mobilization by carbon monoxide enhances endothelial repair after vascular injury. Circulation. 2010;121(4):537–48. (PMID: 200836792841354)
Dauba A, Delalande A, Kamimura HAS, Conti A, Larrat B, Tsapis N, et al. Recent advances on ultrasound contrast agents for blood-brain barrier opening with focused ultrasound. Pharmaceutics. 2020;12(11):1125. (PMID: 332333747700476)
Lapin NA, Gill K, Shah BR, Chopra R. Consistent opening of the blood brain barrier using focused ultrasound with constant intravenous infusion of microbubble agent. Sci Rep. 2020;10(1):16546. (PMID: 330241577538995)
Zhou Y, Wang Z, Chen Y, Shen H, Luo Z, Li A, et al. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater. 2013;25(30):4123–30. (PMID: 23788403)
Lee PJH, Matkar PN, Kuliszewski MA, Leong-Poi H. Ultrasound-targeted cardiovascular gene therapy. In: Cardiac regeneration and repair. Elsevier; 2014. p. 380–407.
Zhang W, Nan SL, Bai WK, Hu B. Low-frequency ultrasound combined with microbubbles improves gene transfection in prostate cancer cells in vitro and in vivo. Asia Pac J Clin Oncol. 2022 Feb;18(1):93–8. (PMID: 33644984)
Wang L, Zheng S. Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy. J Zhejiang Univ-SCIENCE B. 2019;20(4):291–9.
Yang Sun, Kruse DE, Dayton PA, Ferrara KW. High-frequency dynamics of ultrasound contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(11):1981–91.
Wu J, Li Y, Yang P, Huang Y, Lu S, Xu F. Novel Role of Carbon Monoxide in Improving Neurological Outcome After Cardiac Arrest in Aged Rats: Involvement of Inducing Mitochondrial Autophagy. J Am Heart Assoc. 2019;8(9).
Goebel U, Wollborn J. Carbon monoxide in intensive care medicine—time to start the therapeutic application?! Intensive Care Med Exp. 2020;8(1):2. (PMID: 319196056952485)
فهرسة مساهمة: Keywords: carbon monoxide; drug delivery; microbubble; ultrasound; vascular cognitive impairment
المشرفين على المادة: 0 (Gasotransmitters)
تواريخ الأحداث: Date Created: 20231002 Date Completed: 20231127 Latest Revision: 20240103
رمز التحديث: 20240104
DOI: 10.1007/s11095-023-03606-w
PMID: 37783924
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-904X
DOI:10.1007/s11095-023-03606-w