دورية أكاديمية

Comparative analysis of flavonoid metabolites from different parts of Hemerocallis citrina.

التفاصيل البيبلوغرافية
العنوان: Comparative analysis of flavonoid metabolites from different parts of Hemerocallis citrina.
المؤلفون: Lv H; Shanxi Institute for Functional Food, Shanxi Agricultural University, No.79, Longcheng Street, Taiyuan City, Shanxi Province, China., Guo S; Shanxi Institute for Functional Food, Shanxi Agricultural University, No.79, Longcheng Street, Taiyuan City, Shanxi Province, China. gs0351@sohu.com.
المصدر: BMC plant biology [BMC Plant Biol] 2023 Oct 13; Vol. 23 (1), pp. 491. Date of Electronic Publication: 2023 Oct 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 100967807 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2229 (Electronic) Linking ISSN: 14712229 NLM ISO Abbreviation: BMC Plant Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2001-
مواضيع طبية MeSH: Kaempferols* , Hemerocallis*, Chromatography, Liquid ; Tandem Mass Spectrometry ; Flavonoids/chemistry ; Glucosides
مستخلص: Background: Hemerocallis citrina Baroni is a traditional medical and edible plant. It is rich in flavonoid compounds, which are a kind of important bioactive components with various health benefits and pharmaceutical value. However, the flavonoid metabolomics profile and the comparison of flavonoid compounds from different parts of H. citrina is scarce.
Results: In this study, flavonoid metabolites were investigated from roots, stems, leaves and flowers of H. citrina. A total of 364 flavonoid metabolites were identified by UPLC-MS/MS based widely targeted metabolomics, and the four plant parts showed huge differences at flavonoid metabolic level. Compared to roots, 185, 234, and 119 metabolites accounted for upregulated differential flavonoid metabolites (DFMs) in stems, leaves, and flowers, respectively. Compared to stems, 168 and 29 flavonoid metabolites accounted for upregulated DFMs in leaves and flowers, respectively. Compared to leaves, only 29 flavonoid metabolites accounted for upregulated DFMs in flowers. A number of 35 common flavonoid metabolites were observed among six comparison groups, and each comparison group had its unique differential metabolites. The most abundant flavonoid metabolites in the four parts are flavonols and flavones, followed by flavanones, chalcones, flavanols, flavanonols, anthocyanidins, tannin, and proanthocyanidins. 6,7,8-Tetrahydroxy-5-methoxyflavone, 7,8,3',4'-tetrahydroxyflavone, 1-Hydroxy-2,3,8-trimethoxyxanthone, Farrerol-7-O-glucoside, 3',7-dihydroxy-4'-methoxyflavone, 3,3'-O-Dimethylellagic Acid, 5-Hydroxy-6,7-dimethoxyflavone, Nepetin (5,7,3',4'-Tetrahydroxy-6-methoxyflavone), (2s)-4,8,10-trihydroxy-2-methoxy-1 h,2 h-furo[3,2-a]xanthen-11-one are dominant in roots. Isorhamnetin-3-O-(6''-malonyl)glucoside-7-O-rhamnoside, 7-Benzyloxy-5-hydroxy-3',4'-methylenedioxyflavonoid, 3-Hydroxyphloretin-4'-O-glucoside are dominant in stems. Chrysoeriol-7-O-glucoside, Epicatechin glucoside, Kaempferol-3-O-rhamnoside (Afzelin)(Kaempferin)*, Azaleatin (5-O-Methylquercetin), Chrysoeriol-5-O-glucoside, Nepetin-7-O-glucoside(Nepitrin), 3,5,7,2'-Tetrahydroxyflavone; Datiscetin, Procyanidin B2*, Procyanidin B3*, Procyanidin B1, Isorhamnetin-3-O-(6''-acetylglucoside) are dominant in leaves. kaempferol-3-p-coumaroyldiglucoside, Delphinidin-3-O-sophoroside-5-O-glucoside, Limocitrin-3-O-sophoroside, Kaempferol-3-O-rutinoside(Nicotiflorin), Luteolin-7-O-(6''-malonyl)glucoside-5-O-rhamnoside are dominant in flowers.
Conclusion: There was significant difference in flavonoid metabolites among different parts of H. citrina. Leaves had relative higher metabolites contents than other parts. This study provided biological and chemical evidence for the different uses of various plant parts of H. citrina, and these informations are important theoretical basis for the food industry, and medical treatment.
(© 2023. BioMed Central Ltd., part of Springer Nature.)
References: Am J Chin Med. 2020;48(5):1203-1220. (PMID: 32668971)
Int Immunopharmacol. 2015 Apr;25(2):302-10. (PMID: 25698556)
Med Chem. 2012 May;8(3):415-20. (PMID: 22530897)
Nat Prod Res. 2014;28(23):2211-3. (PMID: 24854051)
J Integr Plant Biol. 2014 Sep;56(9):876-86. (PMID: 24730595)
J Agric Food Chem. 2009 Sep 23;57(18):8688-95. (PMID: 19705844)
Int J Mol Sci. 2012;13(7):8869-8881. (PMID: 22942740)
J Pharm Pharmacol. 2005 Jun;57(6):765-71. (PMID: 15969932)
Oncol Lett. 2012 May;3(5):1069-1072. (PMID: 22783393)
J Enzyme Inhib Med Chem. 2016 Aug;31(4):674-83. (PMID: 26147349)
Food Chem. 2021 Apr 20;357:129791. (PMID: 33895687)
Lifestyle Genom. 2022;15(1):1-9. (PMID: 34518463)
Zhongguo Zhong Yao Za Zhi. 2006 Mar;31(5):397-400. (PMID: 16711425)
Cancer Prev Res (Phila). 2011 Apr;4(4):582-91. (PMID: 21330379)
J Pharm Biomed Anal. 2020 Jul 15;186:113314. (PMID: 32361472)
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
Food Chem. 2016 May 15;199:8-17. (PMID: 26775938)
Biomed Environ Sci. 2020 Apr 20;33(4):238-247. (PMID: 32438961)
Anal Chem. 2010 May 15;82(10):4165-73. (PMID: 20405949)
Phytochem Anal. 2003 Jan-Feb;14(1):8-12. (PMID: 12597250)
Antimicrob Agents Chemother. 2006 Apr;50(4):1352-64. (PMID: 16569852)
Yao Xue Xue Bao. 1962 Apr;9:218-24. (PMID: 14073969)
AoB Plants. 2013;5:pls055. (PMID: 23440613)
Mol Plant. 2013 Nov;6(6):1769-80. (PMID: 23702596)
Mitochondrial DNA B Resour. 2020 Feb 11;5(1):1109-1110. (PMID: 33366896)
J Biol Chem. 2012 Nov 2;287(45):38028-40. (PMID: 22992727)
Food Funct. 2019 Oct 16;10(10):6267-6275. (PMID: 31584060)
Molecules. 2021 Oct 12;26(20):. (PMID: 34684730)
Molecules. 2018 Dec 20;24(1):. (PMID: 30577443)
Anticancer Res. 1999 Sep-Oct;19(5B):4297-303. (PMID: 10628390)
J Appl Toxicol. 2010 Aug;30(6):551-8. (PMID: 20809543)
Mol Cell Biochem. 2015 Sep;407(1-2):89-95. (PMID: 26037075)
Planta. 2018 Oct;248(4):859-873. (PMID: 29943113)
J Pharm Pharmacol. 2007 Nov;59(11):1543-8. (PMID: 17976266)
Molecules. 2015 Sep 03;20(9):16170-85. (PMID: 26404226)
Environ Toxicol. 2017 Nov;32(11):2392-2399. (PMID: 28731287)
BMC Plant Biol. 2023 May 29;23(1):285. (PMID: 37248487)
Biomolecules. 2020 Feb 28;10(3):. (PMID: 32121159)
Hortic Res. 2021 Apr 7;8(1):89. (PMID: 33828071)
J Biol Chem. 2005 Apr 8;280(14):13229-40. (PMID: 15659385)
J Pharm Biomed Anal. 2019 Jan 5;162:66-81. (PMID: 30223144)
معلومات مُعتمدة: 2021BQ121 Doctoral Research Initiating Project of Shanxi Agricultural University; SXBYKY2022079 PhD Graduates and Postdoctoral Researchers for Personnel Working in Shanxi Province Research Grants; 202203021222168 Natural Science Foundation of Shanxi Province; 2021YFD1600102 National Key Research and Development Program of China
فهرسة مساهمة: Keywords: Flavonoid metabolites; Hemerocallis citrina; Widely targeted metabolomics
المشرفين على المادة: 0 (Kaempferols)
0 (Flavonoids)
0 (Glucosides)
تواريخ الأحداث: Date Created: 20231012 Date Completed: 20231102 Latest Revision: 20231121
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC10571393
DOI: 10.1186/s12870-023-04510-6
PMID: 37828495
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-2229
DOI:10.1186/s12870-023-04510-6