دورية أكاديمية

Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant.

التفاصيل البيبلوغرافية
العنوان: Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant.
المؤلفون: Ansari M; Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan., Ahmed S; Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan. shakil.botany@pu.edu.pk., Abbasi A; Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan. asimuaf95@gmail.com.; School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA. asimuaf95@gmail.com., Khan MT; Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan., Subhan M; Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, 66000, Pakistan., Bukhari NA; Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia., Hatamleh AA; Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia., Abdelsalam NR; Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
المصدر: Scientific reports [Sci Rep] 2023 Oct 23; Vol. 13 (1), pp. 18048. Date of Electronic Publication: 2023 Oct 23.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Metal Nanoparticles* , Solanum lycopersicum* , Azadirachta*, Plant Extracts/pharmacology ; Silver ; Spectroscopy, Fourier Transform Infrared ; Plant Leaves
مستخلص: Nanotechnology is one of the fastest-growing markets, but developing eco-friendly products, their maximum production, stability, and higher yield is a challenge. In this study, silver nanoparticles were synthesized using an easily available resource, leaves extract of the Neem (Azadirachta indica) plant, as a reducing and capping agent, determined their effect on germination and growth of tomato plants. The maximum production of silver nanoparticles was noted at 70 °C after 3 h of reaction time while treating the 10 ml leaf extract of Neem plant with 10 ml of 1 mM silver nitrate. The impact of the extract preparation method and solvent type on the plant mediated fabrication of silver nanoparticles was also investigated. The UV-spectrophotometric analysis confirmed the synthesis of silver nanoparticles and showed an absorption spectrum within Δ420-440 nm range. The size of the fabricated silver nanoparticles was 22-30 nm. The functional groups such as ethylene, amide, carbonyl, methoxy, alcohol, and phenol attached to stabilize the nanoparticles were observed using the FTIR technique. SEM, EDX, and XRD analyses were performed to study the physiochemical characteristics of synthesized nanoparticles. Silver nanoparticles increased the germination rate of tomato seeds up to 70% while decreasing the mean germination time compared to the control. Silver nanoparticles applied at varying concentrations significantly increased the shoot length (25 to 80%), root length (10 to 60%), and fresh biomass (10 to 80%) biomass of the tomato plant. The production of total chlorophyll, carotenoid, flavonoids, soluble sugar, and protein was significantly increased in tomato plants treated with 5 and 10 ppm silver nanoparticles compared to the control. Green synthesized silver nanoparticles are cost-effective and nontoxic and can be applied in agriculture, biomedical, and other fields.
(© 2023. Springer Nature Limited.)
References: Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M. & Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 25, 112 (2019). (PMID: 318921806982820)
Binns, C. Introduction to Nanoscience and Nanotechnology (Wiley, 2021).
Singh, A. et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep. 25, e00427 (2020).
Fiedler, D. et al. In-vial printing and drying of biologics as a personalizable approach. Int. J. Pharm. 623, 121909 (2022). (PMID: 35697202)
Pollok, D. & Waldvogel, S. R. Electro-organic synthesis–a 21st century technique. Chem. Sci. 11, 12386–12400 (2020). (PMID: 341232278162804)
Tilwari, A. & Saxena, R. in Advanced Nanocarbon Materials 109-126 (CRC Press, 2022).
Lobregas, M. O. S. & Camacho, D. H. Green synthesis of copper-based nanoparticles using microbes. Copp. Nanostruct. Next-Gener. Agrochem. Sustain. Agroecosyst. 17–44 (2022).
Huq, M. A., Ashrafudoulla, M., Rahman, M. M., Balusamy, S. R. & Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 14, 742 (2022). (PMID: 352156558879957)
Khan, S. et al. Single-step acer pentapomicum-mediated green synthesis of silver nanoparticles and their potential antimicrobial and antioxidant activities. J. Nanomater. 2022, 1–10 (2022).
Sumathi, S. & Thomas, A. Eco-friendly and antibacterial finishes of organic fabrics using herbal composite microencapsules. Int. J. Pharma Bio Sci. 8, 310–321 (2017).
Rajoriya, P. et al. Green silver nanoparticles: Recent trends and technological developments. J. Polym. Environ. 29, 2711–2737 (2021).
Dhar, S. A. et al. Plant-mediated green synthesis and characterization of silver nanoparticles using Phyllanthus emblica fruit extract. Mater. Today Proc. 42, 1867–1871 (2021).
Rizwana, H. et al. Green synthesis, characterization, and antimicrobial activity of silver nanoparticles prepared using Trigonella foenum-graecum L. leaves grown in Saudi Arabia. Green Process. Synth. 10, 421–429 (2021).
Maghimaa, M. & Alharbi, S. A. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J. Photochem. Photobiol. B Biol. 204, 111806 (2020).
Ituen, E., Ekemini, E., Yuanhua, L. & Singh, A. Green synthesis of Citrus reticulata peels extract silver nanoparticles and characterization of structural, biocide and anticorrosion properties. J. Mol. Struct. 1207, 127819 (2020).
Ibrahim, A. M. & Ali, A. M. Silver and zinc oxide nanoparticles induce developmental and physiological changes in the larval and pupal stages of Spodoptera littoralis (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 21, 1373–1378 (2018).
Long, Y., Hu, S., Lei, P. & Li, Y. Preparation of green silver nanoparticles with high antibacterial ability using N-maleoyl chitosan and montmorillonite. Mater. Lett. 316, 132044 (2022).
Bélteky, P. et al. Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. Int. J. Nanomed. 3021–3040 (2021).
Barzinjy, A. A. & Azeez, H. H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2, 991 (2020).
Sanchez-Salvador, J. L., Campano, C., Negro, C., Monte, M. C. & Blanco, A. Increasing the possibilities of TEMPO-mediated oxidation in the production of cellulose nanofibers by reducing the reaction time and reusing the reaction medium. Adv. Sustain. Syst. 5, 2000277 (2021).
Lade, B. D. & Shanware, A. S. in Smart nanosystems for biomedicine, optoelectronics and catalysis (IntechOpen, 2020).
Godoy-Gallardo, M. et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 6, 4470–4490 (2021). (PMID: 340272358131399)
Din, S. M. et al. Antibacterial silver nanoparticles using different organs of Ficus deltoidea Jack var. kunstleri (King) Corner. Biocatal. Agric. Biotechnol. 44, 102473 (2022).
Htwe, Y., Chow, W., Suda, Y. & Mariatti, M. Effect of silver nitrate concentration on the production of silver nanoparticles by green method. Mater. Today Proc. 17, 568–573 (2019).
Khan, S. et al. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Environ. Sci. Pollut. Res. 27, 27221–27233 (2020).
Setyawan, N., Hoerudin & Wulanawati, A. in IOP Conference Series: Earth and Environmental Science, 012032 (IOP Publishing).
Mattea, F. et al. Silver nanoparticles in X-ray biomedical applications. Radiat. Phys. Chem. 130, 442–450 (2017).
Kumar, S. S. D., Rajendran, N. K., Houreld, N. N. & Abrahamse, H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int. J. Biol. Macromol. 115, 165–175 (2018). (PMID: 29627463)
Madianos, L. et al. Ιmpedimetric nanoparticle aptasensor for selective and label free pesticide detection. Microelectron. Eng. 189, 39–45 (2018).
Ahmed, S. et al. Characterizing stomatal attributes and photosynthetic induction in relation to biochemical changes in Coriandrum sativum L. by foliar-applied zinc oxide nanoparticles under drought conditions. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.1079283 (2023). (PMID: 10.3389/fpls.2022.10792833794167010628537)
Ansari, A. et al. Characterization and interplay of bacteriocin and exopolysaccharide-mediated silver nanoparticles as an antibacterial agent. Int. J. Biol. Macromol. 115, 643–650 (2018). (PMID: 29689285)
Castro-Mayorga, J. L. et al. Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems. LWT-Food Sci. Technol. 79, 503–510 (2017).
Huy, T. Q. et al. Cytotoxicity and antiviral activity of electrochemical–synthesized silver nanoparticles against poliovirus. J. Virol. Methods 241, 52–57 (2017). (PMID: 28040515)
Ansari, M. et al. Green synthesized silver nanoparticles: A novel approach for the enhanced growth and yield of tomato against early blight disease. Microorganisms 11, 886. https://doi.org/10.3390/microorganisms11040886 (2023). (PMID: 10.3390/microorganisms110408863711030910145257)
Yutong, X., Mishra, P., Eivazi, F. & Afrasiabi, Z. Effects of silver nanoparticle size, concentration and coating on soil quality as indicated by arylsulfatase and sulfite oxidase activities. Pedosphere 32, 733–743 (2022).
Holden, P. A. et al. Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ. Sci. Technol. 50, 6124–6145 (2016). (PMID: 271772374967154)
Noshad, A., Hetherington, C. & Iqbal, M. Impact of AgNPs on seed germination and seedling growth: A focus study on its antibacterial potential against Clavibacter michiganensis subsp. michiganensis infection in Solanum lycopersicum. J. Nanomater. 2019, 1–12 (2019).
Santo Pereira, A. D. E. et al. Lignin nanoparticles: New insights for a sustainable agriculture. J. Clean. Product. 345, 131145 (2022).
Ashraf, H., Anjum, T., Riaz, S. & Naseem, S. Microwave-assisted green synthesis and characterization of silver nanoparticles using Melia azedarach for the management of Fusarium wilt in tomato. Front. Microbiol. 11, 238 (2020). (PMID: 322109287076090)
Chen, F. et al. Mitigation of lead toxicity in Vigna radiata genotypes by silver nanoparticles. Environ. Pollut. 308, 119606 (2022). (PMID: 35716894)
Ansari, M. et al. Evaluation of in vitro and in vivo antifungal activity of green synthesized silver nanoparticles against early blight in tomato. Horticulturae 9, 369 (2023).
Ates, B., Koytepe, S., Ulu, A., Gurses, C. & Thakur, V. K. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120, 9304–9362 (2020). (PMID: 32786427)
Huang, D., Dang, F., Huang, Y., Chen, N. & Zhou, D. Uptake, translocation, and transformation of silver nanoparticles in plants. Environ. Sci. Nano 9, 12–39 (2022).
Coyago-Cruz, E. et al. Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem. 240, 870–884 (2018). (PMID: 28946354)
Mahdiani, M., Soofivand, F., Ansari, F. & Salavati-Niasari, M. Grafting of CuFe12O19 nanoparticles on CNT and graphene: Eco-friendly synthesis, characterization and photocatalytic activity. J. Clean. Product. 176, 1185–1197 (2018).
Nasrollahzadeh, M., Sajjadi, M., Maham, M., Sajadi, S. M. & Barzinjy, A. A. Biosynthesis of the palladium/sodium borosilicate nanocomposite using Euphorbia milii extract and evaluation of its catalytic activity in the reduction of chromium (VI), nitro compounds and organic dyes. Mater. Res. Bull. 102, 24–35 (2018).
Gul, A. R. et al. Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy. Chem. Eng. J. 407, 127202 (2021).
Thummaneni, C., Prakash, D. S., Golli, R. & Vangalapati, M. Green synthesis of silver nanoparticles and characterization of caffeic acid from Myristica fragrans (Nutmeg) against antibacterial activity. Mater. Today Proc. 62, 4001–4005 (2022).
Tehri, N., Vashishth, A., Gahlaut, A. & Hooda, V. Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: Current progress and future prospects. Inorg. Nano-Metal Chem. 52, 1–19 (2022).
Varadavenkatesan, T., Selvaraj, R. & Vinayagam, R. Dye degradation and antibacterial activity of green synthesized silver nanoparticles using Ipomoea digitata Linn. flower extract. Int. J. Environ. Sci. Technol. 16, 2395–2404 (2019).
Kumar, S. et al. Bio-synthesised silver nanoparticle-conjugated l-cysteine ceiled Mn: ZnS quantum dots for eco-friendly biosensor and antimicrobial applications. J. Electron. Mater. 50, 3986–3995 (2021).
Elamawi, R. M., Al-Harbi, R. E. & Hendi, A. A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control 28, 1–11 (2018).
Stavinskaya, O., Laguta, I., Fesenko, T. & Krumova, M. Effect of temperature on green synthesis of silver nanoparticles using Vitex agnus-castus extract. Chem. J. Mold. 14, 117–121 (2019).
Ndikau, M., Noah, N. M., Andala, D. M. & Masika, E. Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract. Int. J. Anal. Chem. 2017 (2017).
Kredy, H. M. The effect of pH, temperature on the green synthesis and biochemical activities of silver nanoparticles from Lawsonia inermis extract. J. Pharm. Sci. Res. 10, 2022–2026 (2018).
Shaik, M. R. et al. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10, 913 (2018).
Smiechowicz, E., Niekraszewicz, B. & Kulpinski, P. Optimisation of AgNP synthesis in the production and modification of antibacterial cellulose fibres. Materials 14, 4126 (2021). (PMID: 343613228348242)
Khleifat, K. et al. The ability of rhizopus stolonifer MR11 to biosynthesize silver nanoparticles in response to various culture media components and optimization of process parameters required at each stage of biosynthesis. J. Ecol. Eng. 23 (2022).
Quintero-Quiroz, C. et al. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater. Res. 23, 1–15 (2019).
Kedi, P. B. E. et al. Biosynthesis of silver nanoparticles from Microsorum punctatum (l.) copel fronds extract and an in-vitro anti-inflammation study. J. Nanotechnol. Res. 2, 25–41 (2020).
Iqbal, S. et al. 76. Phytochemical screening and antibacterial assay of the crude extract and fractions of Ferula oopoda. Pure Appl. Biol. PAB 8, 742–749 (2019).
Abootalebi, S. N. et al. Antibacterial effects of green-synthesized silver nanoparticles using Ferula asafoetida against Acinetobacter baumannii isolated from the hospital environment and assessment of their cytotoxicity on the human cell lines. J. Nanomater. 2021, 1–12 (2021).
Niazmand, R. & Razavizadeh, B. M. Active polyethylene films incorporated with β-cyclodextrin/ferula asafoetida extract inclusion complexes: Sustained release of bioactive agents. Polym. Test. 95, 107113 (2021).
Balu, S. K. et al. Size-dependent antibacterial, antidiabetic, and toxicity of silver nanoparticles synthesized using solvent extraction of Rosa indica L. Petals. Pharmaceuticals 15, 689 (2022). (PMID: 357456099230948)
Aziz, B. et al. Fabrication of interconnected plasmonic spherical silver nanoparticles with enhanced localized surface plasmon resonance (LSPR) peaks using quince leaf extract solution. Nanomaterials 9, 1557 (2019).
Asimuddin, M. et al. Azadirachta indica based biosynthesis of silver nanoparticles and evaluation of their antibacterial and cytotoxic effects. J. King Saud Univ. Sci. 32, 648–656 (2020).
Erenler, R. & Dag, B. Biosynthesis of silver nanoparticles using Origanum majorana L. and evaluation of their antioxidant activity. Inorg. Nano-Metal Chem. 52, 485–492 (2022).
Chen, L. et al. Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application. Chem. Eng. J. 346, 217–225 (2018).
Iravani, S. & Varma, R. S. Biofactories: Engineered nanoparticles via genetically engineered organisms. Green Chem. 21, 4583–4603 (2019).
Mahapatra, D. M., Satapathy, K. C. & Panda, B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci. Tot. Environ. 803, 149990 (2022).
Sadak, M. S. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull. Natl. Res. Centre 43, 1–6 (2019).
Latif, H., Ghareib, M. & Tahon, M. Phytosynthesis of silver nanoparticles using leaf extracts from Ocimum basilicum and Mangifira indica and their effect on some biochemical attributes of Triticum aestivum. Gesunde Pflanzen 69 (2017).
Ahmed, S., Ahmad, M., Swami, B. L. & Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9, 1–7 (2016).
Verma, A. & Mehata, M. S. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 9, 109–115 (2016).
Prathna, T. C., Chandrasekaran, N., Raichur, A. M. & Mukherjee, A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces 82, 152–159 (2011). (PMID: 20833002)
Krishnaraj, C., Ramachandran, R., Mohan, K. & Kalaichelvan, P. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93, 95–99 (2012).
Balashanmugam, P., Balakumaran, M., Murugan, R., Dhanapal, K. & Kalaichelvan, P. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol. Res. 192, 52–64 (2016). (PMID: 27664723)
Singh, A., Jain, D., Upadhyay, M., Khandelwal, N. & Verma, H. Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios 5, 483–489 (2010).
Jain, D., Daima, H. K., Kachhwaha, S. & Kothari, S. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest J. Nanomater. Biostruct. 4, 557–563 (2009).
Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1 (1949). (PMID: 16654194437905)
Taylor, R. F. & Davies, B. H. Triterpenoid carotenoids and related lipids. Triterpenoid carotenoid aldehydes from Streptococcus faecium UNH 564P. Biochem. J. 153, 233 (1976). (PMID: 12758861172567)
Kirk, J. & Allen, R. Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochem. Biophys. Res. Commun. 21, 523–530 (1965). (PMID: 5879460)
Ulubelen, A. et al. Royleinine, a new norditerpenoid alkaloid from Delphinium roylei. Heterocycles 53, 2279–2283 (2000).
Krizek, D. T., Kramer, G. F., Upadhyaya, A. & Mirecki, R. M. UV-B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiol. Plant. 88, 350–358 (1993).
Nelson, N. A photometric adaptation of the Somogyis method for the determination of reducing sugar. Anal. Chem 31, 426–428 (1944).
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). (PMID: 14907713)
المشرفين على المادة: 0 (Plant Extracts)
3M4G523W1G (Silver)
تواريخ الأحداث: Date Created: 20231023 Date Completed: 20231027 Latest Revision: 20231118
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10593853
DOI: 10.1038/s41598-023-45038-x
PMID: 37872286
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-023-45038-x