Determining the effects of temperature on the evolution of bacterial tRNA pools.

التفاصيل البيبلوغرافية
العنوان: Determining the effects of temperature on the evolution of bacterial tRNA pools.
المؤلفون: Jain V; Biotechnology High School, Freehold, New Jersey., Cope AL; Department of Genetics, Rutgers University, Piscataway, New Jersey.; Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey.
المصدر: BioRxiv : the preprint server for biology [bioRxiv] 2023 Oct 09. Date of Electronic Publication: 2023 Oct 09.
نوع المنشور: Preprint
اللغة: English
بيانات الدورية: Country of Publication: United States NLM ID: 101680187 Publication Model: Electronic Cited Medium: Internet NLM ISO Abbreviation: bioRxiv Subsets: PubMed not MEDLINE
مستخلص: The genetic code consists of 61 codon coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNA) that bind to specific codons during protein synthesis. Most organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
التعليقات: Update in: Genome Biol Evol. 2024 Jun 4;16(6):evae116. doi: 10.1093/gbe/evae116. (PMID: 38805023)
References: Mol Genet Genomics. 2021 May;296(3):751-762. (PMID: 33818631)
Biochem J. 1995 Nov 15;312 ( Pt 1):163-7. (PMID: 7492307)
Nat Rev Genet. 2009 Oct;10(10):715-24. (PMID: 19763154)
Annu Rev Biochem. 2005;74:129-77. (PMID: 15952884)
IUBMB Life. 2009 Feb;61(2):99-111. (PMID: 19117371)
Mol Biol Evol. 2010 Mar;27(3):735-41. (PMID: 19910385)
EMBO J. 1984 Nov;3(11):2575-80. (PMID: 6391914)
Nucleic Acids Res. 2014 Jun;42(10):6552-66. (PMID: 24782525)
PLoS Comput Biol. 2007 Jan 12;3(1):e5. (PMID: 17222055)
Phys Biol. 2015 Apr 30;12(3):035001. (PMID: 25927823)
Genome Biol. 2011 Oct 27;12(10):R109. (PMID: 22032172)
Nucleic Acids Res. 2016 Feb 29;44(4):1871-81. (PMID: 26704976)
Mol Cell. 2019 Aug 8;75(3):427-441.e5. (PMID: 31353208)
Front Microbiol. 2019 Apr 15;10:780. (PMID: 31037068)
Mol Biol Evol. 2018 Jan 1;35(1):211-224. (PMID: 29106597)
PLoS Genet. 2010 Sep 16;6(9):e1001128. (PMID: 20862306)
Mol Syst Biol. 2010 Oct 19;6:421. (PMID: 20959819)
PLoS Genet. 2010 Jan 15;6(1):e1000808. (PMID: 20090831)
Mol Biol Evol. 2018 Aug 1;35(8):2046-2059. (PMID: 29846694)
Bioinformatics. 2012 Oct 15;28(20):2689-90. (PMID: 22908216)
Cell. 2015 Jun 18;161(7):1606-18. (PMID: 26052047)
Cell. 2008 Jul 25;134(2):341-52. (PMID: 18662548)
BMC Struct Biol. 2010 May 17;10 Suppl 1:S5. (PMID: 20487512)
Microbiol Rev. 1995 Mar;59(1):48-62. (PMID: 7708012)
Microbiol Res. 2010 Oct 20;165(8):609-16. (PMID: 20172701)
معلومات مُعتمدة: K12 GM093854 United States GM NIGMS NIH HHS
تواريخ الأحداث: Date Created: 20231024 Latest Revision: 20240611
رمز التحديث: 20240612
مُعرف محوري في PubMed: PMC10592612
DOI: 10.1101/2023.09.26.559538
PMID: 37873246
قاعدة البيانات: MEDLINE
الوصف
DOI:10.1101/2023.09.26.559538