دورية أكاديمية

Remarkable heat conduction mediated by non-equilibrium phonon polaritons.

التفاصيل البيبلوغرافية
العنوان: Remarkable heat conduction mediated by non-equilibrium phonon polaritons.
المؤلفون: Pan Z; Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA., Lu G; Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA., Li X; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA., McBride JR; Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA., Juneja R; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA., Long M; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA., Lindsay L; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA., Caldwell JD; Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA., Li D; Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA. deyu.li@vanderbilt.edu.
المصدر: Nature [Nature] 2023 Nov; Vol. 623 (7986), pp. 307-312. Date of Electronic Publication: 2023 Oct 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Hot Temperature* , Phonons*, Thermal Conductivity ; Gold ; Infrared Rays
مستخلص: Surface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires 1 . However, experimental efforts so far suggest only very limited SPhP contributions 2-5 . Through systematic measurements of thermal transport along the same 3C-SiC nanowires with and without a gold coating on the end(s) that serves to launch SPhPs, here we show that thermally excited SPhPs can substantially enhance the thermal conductivity of the uncoated portion of these wires. The extracted pre-decay SPhP thermal conductance is more than two orders of magnitude higher than the Landauer limit predicted on the basis of equilibrium Bose-Einstein distributions. We attribute the notable SPhP conductance to the efficient launching of non-equilibrium SPhPs from the gold-coated portion into the uncoated SiC nanowires, which is strongly supported by the observation that the SPhP-mediated thermal conductivity is proportional to the length of the gold coating(s). The reported discoveries open the door for modulating energy transport in solids by introducing SPhPs, which can effectively counteract the classical size effect in many technologically important films and improve the design of solid-state devices.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Chen, D., Narayanaswamy, A. & Chen, G. Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films. Phys. Rev. B 72, 155435 (2005). (PMID: 10.1103/PhysRevB.72.155435)
Tranchant, L. et al. Two-dimensional phonon polariton heat transport. Nano Lett. 19, 6924–6930 (2019). (PMID: 3152506110.1021/acs.nanolett.9b02214)
Shin, S., Elzouka, M., Prasher, R. & Chen, R. Far-field coherent thermal emission from polaritonic resonance in individual anisotropic nanoribbons. Nat. Commun. 10, 1377 (2019). (PMID: 30914641643568410.1038/s41467-019-09378-5)
Wu, Y. et al. Enhanced thermal conduction by surface phonon-polaritons. Sci. Adv. 6, eabb4461 (2020). (PMID: 32998899752723010.1126/sciadv.abb4461)
Wu, Y. et al. Observation of heat transport mediated by the propagation distance of surface phonon-polaritons over hundreds of micrometers. Appl. Phys. Lett. 121, 112203 (2022). (PMID: 10.1063/5.0100506)
Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).
Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021). (PMID: 3368627810.1038/s41563-021-00918-3)
Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010). (PMID: 2064746010.1126/science.1188260)
Chen, X. et al. Synthesis and magnon thermal transport properties of spin ladder Sr 14 Cu 24 O 41 microstructures. Adv. Funct. Mater. 30, 2001637 (2020). (PMID: 10.1002/adfm.202001637)
Czajka, P. et al. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl 3 . Nat. Mater. 22, 36–41 (2023). (PMID: 3639696210.1038/s41563-022-01397-w)
Carminati, R. & Greffet, J. Near-field effects in spatial coherence of thermal sources. Phys. Rev. Lett. 82, 1660 (1999). (PMID: 10.1103/PhysRevLett.82.1660)
Mulet, J., Joulain, K. & Carminati, R. Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 78, 2931–2933 (2001). (PMID: 10.1063/1.1370118)
Shen, S., Narayanaswamy, A. & Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009). (PMID: 1971911010.1021/nl901208v)
Kim, K. et al. Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015). (PMID: 2664131210.1038/nature16070)
St-Gelais, R., Zhu, L., Fan, S. & Lipson, M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat. Nanotechnol. 11, 515–519 (2016). (PMID: 2695024310.1038/nnano.2016.20)
Ordonez-Miranda, J. et al. Anomalous thermal conductivity by surface phonon-polaritons of polar nano thin films due to their asymmetric surrounding media. J. Appl. Phys. 113, 084311 (2013). (PMID: 10.1063/1.4793498)
Ordonez-Miranda, J. et al. Quantized thermal conductance of nanowires at room temperature due to Zenneck surface-phonon polaritons. Phys. Rev. Lett. 112, 055901 (2014). (PMID: 2458061410.1103/PhysRevLett.112.055901)
Ordonez-Miranda, J. et al. Thermal energy transport in a surface phonon-polariton crystal. Phys. Rev. B 93, 035428 (2016). (PMID: 10.1103/PhysRevB.93.035428)
Yun, K. H., Lee, B. J. & Lee, S. H. Modeling effective thermal conductivity enhanced by surface waves using the Boltzmann transport equation. Sci. Rep. 12, 15477 (2022). (PMID: 36104479947451510.1038/s41598-022-19873-3)
Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 125, 881–888 (2003). (PMID: 10.1115/1.1597619)
Wingert, M. C., Chen, Z., Kwon, S., Xiang, J. & Chen, R. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. Rev. Sci. Instrum. 83, 024901 (2012). (PMID: 2238011710.1063/1.3681255)
Yang, L. et al. Thermal conductivity of individual silicon nanoribbons. Nanoscale 8, 17895–17901 (2016). (PMID: 2772264010.1039/C6NR06302K)
Yang, L. et al. Observation of superdiffusive phonon transport in aligned atomic chains. Nat. Nanotechnol. 16, 764–768 (2021). (PMID: 3385938910.1038/s41565-021-00884-6)
Zhao, Y. et al. Electrical and thermal transport through silver nanowires and their contacts: effects of elastic stiffening. Nano Lett. 20, 7389–7396 (2020). (PMID: 3283346210.1021/acs.nanolett.0c02014)
Yang, J. et al. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. Small 7, 2334–2340 (2011). (PMID: 2164807310.1002/smll.201100429)
Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017). (PMID: 2880539710.1021/acs.nanolett.7b01587)
Chen, M. et al. Configurable phonon polaritons in twisted α-MoO 3 . Nat. Mater. 19, 1307–1311 (2020). (PMID: 3266138410.1038/s41563-020-0732-6)
Novotny, L. & Hecht, B. Principles of Nano-Optics 2nd edn (Cambridge Univ. Press, 2012).
Hu, G., Shen, J., Qiu, C., Alù, A. & Dai, S. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater. 8, 1901393 (2020). (PMID: 10.1002/adom.201901393)
Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002). (PMID: 1211088310.1038/nature00899)
Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photonics 3, 658–661 (2009). (PMID: 10.1038/nphoton.2009.188)
Huber, A. J., Deutsch, B., Novotny, L. & Hillenbrand, R. Focusing of surface phonon polaritons. Appl. Phys. Lett. 92, 203104 (2008). (PMID: 10.1063/1.2930681)
Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017). (PMID: 2789372410.1038/nmat4792)
Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002). (PMID: 1188289010.1038/416061a)
Eaton, S. W., Fu, A., Wong, A. B., Ning, C. Z. & Yang, P. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016). (PMID: 10.1038/natrevmats.2016.28)
Domoto, G. A., Boehm, R. F. & Tien, C. L. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transf. 3, 412–416 (1970). (PMID: 10.1115/1.3449677)
Thompson, D. et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018). (PMID: 3017782510.1038/s41586-018-0480-9)
Zhang, Q. et al. Thermal transport in quasi-1D van der Waals crystal Ta 2 Pd 3 Se 8 nanowires: size and length dependence. ACS Nano 12, 2634–2642 (2018). (PMID: 2947408610.1021/acsnano.7b08718)
Teitsworth, T. S. et al. Water splitting with silicon p–i–n superlattices suspended in solution. Nature 614, 270–274 (2023). (PMID: 3675517010.1038/s41586-022-05549-5)
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). (PMID: 10.1103/PhysRevB.50.17953)
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (PMID: 10.1016/0927-0256(96)00008-0)
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (PMID: 10.1103/PhysRevB.54.11169)
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). (PMID: 10.1103/PhysRevB.59.1758)
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). (PMID: 1006232810.1103/PhysRevLett.77.3865)
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015). (PMID: 10.1016/j.scriptamat.2015.07.021)
Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014). (PMID: 10.1016/j.cpc.2014.02.015)
Serrano, J., Strempfer, J. & Cardona, M. Determination of the phonon dispersion of zinc blende (3C) silicon carbide by inelastic x-ray scattering. Appl. Phys. Lett. 80, 4360–4362 (2002). (PMID: 10.1063/1.1484241)
Widulle, F., Ruf, T., Buresch, O., Debernardi, A. & Cardona, M. Raman study of isotope effects and phonon eigenvectors in SiC. Appl. Phys. Lett. 82, 3089 (1999). (PMID: 10.1103/PhysRevLett.82.3089)
Fermi, E. Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago (Univ. Chicago Press, 1950).
Omini, M. & Sparavigna, A. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B 53, 9064 (1996). (PMID: 10.1103/PhysRevB.53.9064)
Broido, D., Ward, A. & Mingo, N. Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys. Rev. B 72, 014308 (2005). (PMID: 10.1103/PhysRevB.72.014308)
Ashley, J. C. & Emerson, L. C. Dispersion relations for non-radiative surface plasmons on cylinders. Surf. Sci. 41, 615–618 (1974). (PMID: 10.1016/0039-6028(74)90080-6)
Li, Y., Qi, R., Shi, R., Li, N. & Gao, P. Manipulation of surface phonon polaritons in SiC nanorods. Sci. Bull. 65, 820–826 (2020). (PMID: 10.1016/j.scib.2020.02.026)
Sun, S., Chen, H., Zheng, W. & Guo, G. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express 21, 14591–14605 (2013). (PMID: 2378764710.1364/OE.21.014591)
Englman, R. & Ruppin, R. Optical lattice vibrations in finite ionic crystals: III. J. Phys. C Solid State Phys. 1, 1515 (1968). (PMID: 10.1088/0022-3719/1/6/307)
Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).
Murphy, P. & Moore, J. Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires. Phys. Rev. B 76, 155313 (2007). (PMID: 10.1103/PhysRevB.76.155313)
المشرفين على المادة: 7440-57-5 (Gold)
تواريخ الأحداث: Date Created: 20231025 Date Completed: 20231109 Latest Revision: 20231109
رمز التحديث: 20231109
DOI: 10.1038/s41586-023-06598-0
PMID: 37880364
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06598-0