دورية أكاديمية

Simultaneous quantification of perfusion, permeability, and leakage effects in brain gliomas using dynamic spin-and-gradient-echo echoplanar imaging MRI.

التفاصيل البيبلوغرافية
العنوان: Simultaneous quantification of perfusion, permeability, and leakage effects in brain gliomas using dynamic spin-and-gradient-echo echoplanar imaging MRI.
المؤلفون: Sanvito F; UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA.; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA.; Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Viale Camillo Golgi 19, 27100, Pavia, Italy., Raymond C; UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA.; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Cho NS; UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA.; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA.; Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA.; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 7400 Boelter Hall, Los Angeles, CA, 90095, USA., Yao J; UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA.; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Hagiwara A; UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA.; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA.; Department of Radiology, Juntendo University School of Medicine, Bunkyo City, 2-Chōme-1-1 Hongō, Tokyo, 113-8421, Japan., Orpilla J; Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Liau LM; Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Everson RG; Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Nghiemphu PL; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Lai A; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Prins R; Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Salamon N; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Cloughesy TF; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA., Ellingson BM; UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA. bellingson@mednet.ucla.edu.; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA. bellingson@mednet.ucla.edu.; Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA. bellingson@mednet.ucla.edu.; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 7400 Boelter Hall, Los Angeles, CA, 90095, USA. bellingson@mednet.ucla.edu.; Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA. bellingson@mednet.ucla.edu.; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA. bellingson@mednet.ucla.edu.
المصدر: European radiology [Eur Radiol] 2024 May; Vol. 34 (5), pp. 3087-3101. Date of Electronic Publication: 2023 Oct 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 9114774 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1084 (Electronic) Linking ISSN: 09387994 NLM ISO Abbreviation: Eur Radiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer International, c1991-
مواضيع طبية MeSH: Brain Neoplasms*/diagnostic imaging , Glioma*/diagnostic imaging , Contrast Media* , Echo-Planar Imaging*/methods, Humans ; Male ; Female ; Middle Aged ; Adult ; Prospective Studies ; Aged ; Feasibility Studies ; Cerebrovascular Circulation/physiology ; Permeability
مستخلص: Objective: To determine the feasibility and biologic correlations of dynamic susceptibility contrast (DSC), dynamic contrast enhanced (DCE), and quantitative maps derived from contrast leakage effects obtained simultaneously in gliomas using dynamic spin-and-gradient-echo echoplanar imaging (dynamic SAGE-EPI) during a single contrast injection.
Materials and Methods: Thirty-eight patients with enhancing brain gliomas were prospectively imaged with dynamic SAGE-EPI, which was processed to compute traditional DSC metrics (normalized relative cerebral blood flow [nrCBV], percentage of signal recovery [PSR]), DCE metrics (volume transfer constant [K trans ], extravascular compartment [v e ]), and leakage effect metrics: ΔR 2,ss * (reflecting T 2 *-leakage effects), ΔR 1,ss (reflecting T 1 -leakage effects), and the transverse relaxivity at tracer equilibrium (TRATE, reflecting the balance between ΔR 2,ss * and ΔR 1,ss ). These metrics were compared between patient subgroups (treatment-naïve [TN] vs recurrent [R]) and biological features (IDH status, Ki67 expression).
Results: In IDH wild-type gliomas (IDH wt -i.e., glioblastomas), previous exposure to treatment determined lower TRATE (p = 0.002), as well as higher PSR (p = 0.006), K trans (p = 0.17), ΔR 1,ss (p = 0.035), v e (p = 0.006), and ADC (p = 0.016). In IDH-mutant gliomas (IDH m ), previous treatment determined higher K trans and ΔR 1,ss (p = 0.026). In TN-gliomas, dynamic SAGE-EPI metrics tended to be influenced by IDH status (p ranging 0.09-0.14). TRATE values above 142 mM -1 s -1 were exclusively seen in TN-IDH wt , and, in TN-gliomas, this cutoff had 89% sensitivity and 80% specificity as a predictor of Ki67 > 10%.
Conclusions: Dynamic SAGE-EPI enables simultaneous quantification of brain tumor perfusion and permeability, as well as mapping of novel metrics related to cytoarchitecture (TRATE) and blood-brain barrier disruption (ΔR 1,ss ), with a single contrast injection.
Clinical Relevance Statement: Simultaneous DSC and DCE analysis with dynamic SAGE-EPI reduces scanning time and contrast dose, respectively alleviating concerns about imaging protocol length and gadolinium adverse effects and accumulation, while providing novel leakage effect metrics reflecting blood-brain barrier disruption and tumor tissue cytoarchitecture.
Key Points: • Traditionally, perfusion and permeability imaging for brain tumors requires two separate contrast injections and acquisitions. • Dynamic spin-and-gradient-echo echoplanar imaging enables simultaneous perfusion and permeability imaging. • Dynamic spin-and-gradient-echo echoplanar imaging provides new image contrasts reflecting blood-brain barrier disruption and cytoarchitecture characteristics.
(© 2023. The Author(s).)
التعليقات: Comment in: Eur Radiol. 2024 May;34(5):3084-3086. doi: 10.1007/s00330-023-10277-z. (PMID: 37917358)
References: Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106. (PMID: 10.1093/neuonc/noab106341850768328013)
Tabouret E, Nguyen AT, Dehais C et al (2016) Prognostic impact of the 2016 WHO classification of diffuse gliomas in the French POLA cohort. Acta Neuropathol 132:625–634. https://doi.org/10.1007/s00401-016-1611-8. (PMID: 10.1007/s00401-016-1611-827573687)
Carabenciov ID, Buckner JC (2019) Controversies in the therapy of low-grade gliomas. Curr Treat Options Oncol 20:25. https://doi.org/10.1007/s11864-019-0625-6. (PMID: 10.1007/s11864-019-0625-630874903)
Cloughesy TF, Mochizuki AY, Orpilla JR et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25:477–486. https://doi.org/10.1038/s41591-018-0337-7. (PMID: 10.1038/s41591-018-0337-7307421226408961)
Ellingson BM, Kim HJ, Woodworth DC et al (2014) Recurrent glioblastoma treated with bevacizumab: contrast-enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of survival in a multicenter clinical trial. Radiology 271:200–210. https://doi.org/10.1148/radiol.13131305. (PMID: 10.1148/radiol.1313130524475840)
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. https://doi.org/10.1016/s0092-8674(00)81683-9. (PMID: 10.1016/s0092-8674(00)81683-910647931)
Domènech M, Hernández A, Plaja A, et al (2021) Hypoxia: the cornerstone of glioblastoma. Int J Mol Sci 22: https://doi.org/10.3390/ijms222212608.
Kane JR (2019) The role of brain vasculature in glioblastoma. Mol Neurobiol 56:6645–6653. https://doi.org/10.1007/s12035-019-1561-y. (PMID: 10.1007/s12035-019-1561-y30911935)
Das S, Marsden PA (2013) Angiogenesis in glioblastoma. N Engl J Med 369:1561–1563. https://doi.org/10.1056/NEJMcibr1309402. (PMID: 10.1056/NEJMcibr1309402241311825378489)
Zhang J, Liu H, Tong H, et al (2017) Clinical applications of contrast-enhanced perfusion MRI techniques in gliomas: recent advances and current challenges. Contrast Media Mol Imaging 2017: https://doi.org/10.1155/2017/7064120.
Chakhoyan A, Yao J, Leu K et al (2019) Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry. Sci Rep 9:2846. https://doi.org/10.1038/s41598-018-37564-w. (PMID: 10.1038/s41598-018-37564-w308088796391482)
Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232. https://doi.org/10.1002/(sici)1522-2586(199909)10:3%3c223::aid-jmri2%3e3.0.co;2-s. (PMID: 10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s10508281)
Brendle C, Hempel JM, Schittenhelm J et al (2018) Glioma grading and determination of IDH mutation status and ATRX loss by DCE and ASL perfusion. Clin Neuroradiol 28:421–428. https://doi.org/10.1007/s00062-017-0590-z. (PMID: 10.1007/s00062-017-0590-z28488024)
Anzalone N, Castellano A, Cadioli M et al (2018) Brain gliomas: multicenter standardized assessment of dynamic contrast-enhanced and dynamic susceptibility contrast MR images. Radiology 287:933–943. https://doi.org/10.1148/radiol.2017170362. (PMID: 10.1148/radiol.201717036229361245)
Delgado AF, Delgado AF (2017) Discrimination between glioma grades II and III using dynamic susceptibility perfusion MRI: a meta-analysis. AJNR Am J Neuroradiol 38:1348–1355. https://doi.org/10.3174/ajnr.A5218. (PMID: 10.3174/ajnr.A5218285226667959917)
Zhang HW, lyu GW, He WJ, et al (2020) DSC and DCE histogram analyses of glioma biomarkers, including IDH, MGMT, and TERT, on differentiation and survival. Acad Radiol 1–9. https://doi.org/10.1016/j.acra.2019.12.010.
Sanvito F, Castellano A, Falini A (2021) Advancements in neuroimaging to unravel biological and molecular features of brain tumors. Cancers (Basel) 13:1–25. https://doi.org/10.3390/cancers13030424. (PMID: 10.3390/cancers13030424)
Leu K, Ott GA, Lai A et al (2017) Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II–III diffuse gliomas. J Neurooncol 134:177–188. https://doi.org/10.1007/s11060-017-2506-9. (PMID: 10.1007/s11060-017-2506-9285475907927357)
Kickingereder P, Sahm F, Radbruch A et al (2015) IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 5:1–9. https://doi.org/10.1038/srep16238. (PMID: 10.1038/srep16238)
Zhao J, Yang Z, Luo B et al (2015) Quantitative evaluation of diffusion and dynamic contrast-enhanced MR in tumor parenchyma and peritumoral area for distinction of brain tumors. PLoS One 10:e0138573. https://doi.org/10.1371/journal.pone.0138573. (PMID: 10.1371/journal.pone.0138573263843294575081)
Kickingereder P, Sahm F, Wiestler B et al (2014) Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. AJNR Am J Neuroradiol 35:1503–1508. https://doi.org/10.3174/ajnr.A3915. (PMID: 10.3174/ajnr.A3915247223137964431)
Chaganti J, Taylor M, Woodford H, Steel T (2021) Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-derived metrics: pilot study. World Neurosurg 151:e979–e987. https://doi.org/10.1016/j.wneu.2021.05.026. (PMID: 10.1016/j.wneu.2021.05.02634020062)
Pons-Escoda A, Garcia-Ruiz A, Naval-Baudin P et al (2020) Presurgical identification of primary central nervous system lymphoma with normalized time-intensity curve: a pilot study of a new method to analyze DSC-PWI. AJNR Am J Neuroradiol 41:1816–1824. https://doi.org/10.3174/ajnr.A6761. (PMID: 10.3174/ajnr.A6761329434247661072)
Pons-Escoda A, Smits M (2023) Dynamic-susceptibility-contrast perfusion-weighted-imaging (DSC-PWI) in brain tumors: a brief up-to-date overview for clinical neuroradiologists. Eur Radiol https://doi.org/10.1007/s00330-023-09729-3.
Strauss SB, Meng A, Ebani EJ, Chiang GC (2019) Imaging glioblastoma posttreatment: progression, pseudoprogression, pseudoresponse, radiation necrosis. Radiol Clin North Am. 57:1199–1216. (PMID: 10.1016/j.rcl.2019.07.00331582045)
Muto M, Frauenfelder G, Senese R et al (2018) Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2. Radiol Med 123:545–552. https://doi.org/10.1007/s11547-018-0866-7. (PMID: 10.1007/s11547-018-0866-729508242)
Shin KE, Ahn KJ, Choi HS et al (2014) DCE and DSC MR perfusion imaging in the differentiation of recurrent tumour from treatment-related changes in patients with glioma. Clin Radiol 69:e264-72. https://doi.org/10.1016/j.crad.2014.01.016. (PMID: 10.1016/j.crad.2014.01.01624594379)
Manfrini E, Smits M, Thust S et al (2021) From research to clinical practice: a European neuroradiological survey on quantitative advanced MRI implementation. Eur Radiol 31:6334–6341. https://doi.org/10.1007/s00330-020-07582-2. (PMID: 10.1007/s00330-020-07582-2334810988270851)
Gulani V, Calamante F, Shellock FG et al (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16:564–570. https://doi.org/10.1016/S1474-4422(17)30158-8. (PMID: 10.1016/S1474-4422(17)30158-828653648)
Weinreb JC, Rodby RA, Yee J et al (2021) Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 298:28–35. https://doi.org/10.1148/radiol.2020202903. (PMID: 10.1148/radiol.202020290333170103)
Stokes AM, Bergamino M, Alhilali L et al (2021) Evaluation of single bolus, dual-echo dynamic susceptibility contrast MRI protocols in brain tumor patients. J Cereb Blood Flow Metab 41:3378–3390. https://doi.org/10.1177/0271678X211039597. (PMID: 10.1177/0271678X211039597344152118669280)
Quarles CC, Gochberg DF, Gore JC, Yankeelov TE (2009) A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation. Phys Med Biol 54:5749–5766. https://doi.org/10.1088/0031-9155/54/19/006. (PMID: 10.1088/0031-9155/54/19/006197297122767268)
Semmineh NB, Xu J, Skinner JT et al (2015) Assessing tumor cytoarchitecture using multiecho DSC-MRI derived measures of the transverse relaxivity at tracer equilibrium (TRATE). Magn Reson Med 74:772–784. https://doi.org/10.1002/mrm.25435. (PMID: 10.1002/mrm.2543525227668)
Mangla R, Kolar B, Zhu T et al (2011) Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. AJNR Am J Neuroradiol 32:1004–1010. https://doi.org/10.3174/ajnr.A2441. (PMID: 10.3174/ajnr.A2441215118638013151)
Lee MD, Baird GL, Bell LC et al (2019) Utility of percentage signal recovery and baseline signal in DSC-MRI optimized for relative CBV measurement for differentiating glioblastoma, lymphoma, metastasis, and meningioma. AJNR Am J Neuroradiol 40:1445–1450. https://doi.org/10.3174/ajnr.A6153. (PMID: 10.3174/ajnr.A6153313713606728173)
Boxerman JL, Paulson ES, Prah MA, Schmainda KM (2013) The effect of pulse sequence parameters and contrast agent dose on percentage signal recovery in DSC-MRI: implications for clinical applications. AJNR Am J Neuroradiol 34:1364–1369. https://doi.org/10.3174/ajnr.A3477. (PMID: 10.3174/ajnr.A3477234132494316677)
Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 17:1188–1198. https://doi.org/10.1093/neuonc/nov095. (PMID: 10.1093/neuonc/nov095262505654588759)
Schmiedeskamp H, Straka M, Newbould RD et al (2012) Combined spin- and gradient-echo perfusion-weighted imaging. Magn Reson Med 68:30–40. https://doi.org/10.1002/mrm.23195. (PMID: 10.1002/mrm.2319522114040)
Schmiedeskamp H, Straka M, Bammer R (2012) Compensation of slice profile mismatch in combined spin- and gradient-echo echo-planar imaging pulse sequences. Magn Reson Med 67:378–388. https://doi.org/10.1002/mrm.23012. (PMID: 10.1002/mrm.2301221858858)
Welker K, Boxerman J, Kalnin A et al (2015) ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 36:E41–E51. https://doi.org/10.3174/ajnr.A4341. (PMID: 10.3174/ajnr.A4341259075205074767)
Conte GM, Altabella L, Castellano A et al (2019) Comparison of T1 mapping and fixed T1 method for dynamic contrast-enhanced MRI perfusion in brain gliomas. Eur Radiol 29:3467–3479. https://doi.org/10.1007/s00330-019-06122-x. (PMID: 10.1007/s00330-019-06122-x30972545)
Rohrer M, Bauer H, Mintorovitch J et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724. https://doi.org/10.1097/01.rli.0000184756.66360.d3. (PMID: 10.1097/01.rli.0000184756.66360.d316230904)
Leu K, Boxerman JL, Cloughesy TF et al (2016) Improved leakage correction for single-echo dynamic susceptibility contrast perfusion MRI estimates of relative cerebral blood volume in high-grade gliomas by accounting for bidirectional contrast agent exchange. AJNR Am J Neuroradiol 37:1440–1446. https://doi.org/10.3174/ajnr.A4759. (PMID: 10.3174/ajnr.A4759270793714983482)
Evans JD (1996) Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co.
Sanvito F, Palesi F, Rognone E et al (2022) Impact of the inversion time on regional brain perfusion estimation with clinical arterial spin labeling protocols. MAGMA 35:349–363. https://doi.org/10.1007/s10334-021-00964-7. (PMID: 10.1007/s10334-021-00964-734643853)
Zhang Z, Gu W, Hu M et al (2022) Based on clinical Ki-67 expression and serum infiltrating lymphocytes related nomogram for predicting the diagnosis of glioma-grading. Front Oncol 12:696037. https://doi.org/10.3389/fonc.2022.696037. (PMID: 10.3389/fonc.2022.696037361479289488114)
Skjulsvik AJ, Mørk JN, Torp MO, Torp SH (2014) Ki-67/MIB-1 immunostaining in a cohort of human gliomas. Int J Clin Exp Pathol 7:8905–8910. (PMID: 256742634313958)
Castellano A, Falini A (2016) Progress in neuro-imaging of brain tumors. Curr Opin Oncol 28:484–493. https://doi.org/10.1097/CCO.0000000000000328. (PMID: 10.1097/CCO.000000000000032827649026)
Blethen KE, Sprowls SA, Arsiwala TA et al (2023) Effects of whole-brain radiation therapy on the blood-brain barrier in immunocompetent and immunocompromised mouse models. Radiat Oncol 18:22. https://doi.org/10.1186/s13014-023-02215-6. (PMID: 10.1186/s13014-023-02215-6367327549896731)
Wilson CM, Gaber MW, Sabek OM et al (2009) Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys 74:934–941. https://doi.org/10.1016/j.ijrobp.2009.02.035. (PMID: 10.1016/j.ijrobp.2009.02.03519480972)
van Vulpen M, Kal HB, Taphoorn MJB, El-Sharouni SY (2002) Changes in blood-brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? (Review). Oncol Rep 9:683–688. (PMID: 12066192)
Woodall RT, Sahoo P, Cui Y, et al (2021) Repeatability of tumor perfusion kinetics from dynamic contrast-enhanced MRI in glioblastoma. Neurooncol Adv 3:vdab174. https://doi.org/10.1093/noajnl/vdab174.
Cetinkaya E, Aralasmak A, Atasoy B et al (2022) Dynamic contrast-enhanced MR perfusion in differentiation of benign and malignant brain lesions. Curr Med imaging 18:1099–1105. https://doi.org/10.2174/1573405618666220324112457. (PMID: 10.2174/157340561866622032411245735331119)
Ahn SS, Shin NY, Chang JH et al (2014) Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging: clinical article. J Neurosurg 121:367–373. https://doi.org/10.3171/2014.5.JNS132279. (PMID: 10.3171/2014.5.JNS13227924949678)
Aparici-Robles F, Davidhi A, Carot-Sierra JM et al (2022) Glioblastoma versus solitary brain metastasis: MRI differentiation using the edema perfusion gradient. J Neuroimaging 32:127–133. https://doi.org/10.1111/jon.12920. (PMID: 10.1111/jon.1292034468052)
Gates EDH, Weinberg JS, Prabhu SS et al (2021) Estimating local cellular density in glioma using MR imaging data. AJNR Am J Neuroradiol 42:102–108. https://doi.org/10.3174/ajnr.A6884. (PMID: 10.3174/ajnr.A6884332438977814791)
Surov A, Meyer HJ, Wienke A (2017) Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget 8:59492–59499. https://doi.org/10.18632/oncotarget.17752.
Rahm V, Boxheimer L, Bruehlmeier M et al (2014) Focal changes in diffusivity on apparent diffusion coefficient MR imaging and amino acid uptake on pet do not colocalize in nonenhancing low-grade gliomas. J Nucl Med 55:546–550. https://doi.org/10.2967/jnumed.113.130732. (PMID: 10.2967/jnumed.113.13073224566001)
Patel KS, Yao J, Raymond C et al (2020) Decorin expression is associated with predictive diffusion MR phenotypes of anti-VEGF efficacy in glioblastoma. Sci Rep 10:14819. https://doi.org/10.1038/s41598-020-71799-w. (PMID: 10.1038/s41598-020-71799-w329082317481206)
Cindil E, Sendur HN, Cerit MN et al (2021) Validation of combined use of DWI and percentage signal recovery-optimized protocol of DSC-MRI in differentiation of high-grade glioma, metastasis, and lymphoma. Neuroradiology 63:331–342. https://doi.org/10.1007/s00234-020-02522-9. (PMID: 10.1007/s00234-020-02522-932821962)
Kinoshita M, Uchikoshi M, Tateishi S, et al (2021) Magnetic resonance relaxometry for tumor cell density imaging for glioma: an exploratory study via (11)C-methionine PET and its validation via stereotactic tissue sampling. Cancers (Basel) 13: https://doi.org/10.3390/cancers13164067.
Bobholz SA, Lowman AK, Brehler M et al (2022) Radio-pathomic maps of cell density identify brain tumor invasion beyond traditional MRI-defined margins. AJNR Am J Neuroradiol 43:682–688. https://doi.org/10.3174/ajnr.A7477. (PMID: 10.3174/ajnr.A7477354224199089258)
Roberts TA, Hyare H, Agliardi G et al (2020) Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-65956-4. (PMID: 10.1038/s41598-020-65956-4)
Arevalo-Perez J, Thomas AA, Kaley T et al (2015) T1-weighted dynamic contrast-enhanced MRI as a noninvasive biomarker of epidermal growth factor receptor VIII status. AJNR Am J Neuroradiol 36:2256–2261. https://doi.org/10.3174/ajnr.A4484. (PMID: 10.3174/ajnr.A4484263389134724408)
Jo SW, Choi SH, Lee EJ et al (2021) Prognostic prediction based on dynamic contrast-enhanced MRI and dynamic susceptibility contrast-enhanced MRI parameters from non-enhancing, T2-high-signal-intensity lesions in patients with glioblastoma. Korean J Radiol 22:1369–1378. https://doi.org/10.3348/kjr.2020.1272. (PMID: 10.3348/kjr.2020.1272339879948316772)
Emblem KE, Mouridsen K, Bjornerud A et al (2013) Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 19:1178–1183. https://doi.org/10.1038/nm.3289. (PMID: 10.1038/nm.3289239557133769525)
Boxerman JL, Quarles CC, Hu LS et al (2020) Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 22:1262–1275. https://doi.org/10.1093/neuonc/noaa141. (PMID: 10.1093/neuonc/noaa141325163887523451)
معلومات مُعتمدة: R01 CA270027 United States CA NCI NIH HHS; R01 CA279984 United States CA NCI NIH HHS; R21 CA223757 United States CA NCI NIH HHS; T32 GM008042 United States GM NIGMS NIH HHS; DoD CA20029 U.S. Department of Defense; NIH NCI P50CA211015 Foundation for the National Institutes of Health; NIH NCI R01CA279984 Foundation for the National Institutes of Health; NIH NCI R01CA270027 Foundation for the National Institutes of Health; NIH NIGMS T32 GM008042 Foundation for the National Institutes of Health
فهرسة مساهمة: Keywords: Blood–brain barrier; Glioblastoma; Magnetic resonance imaging; Perfusion imaging; Vascular permeability
المشرفين على المادة: 0 (Contrast Media)
تواريخ الأحداث: Date Created: 20231026 Date Completed: 20240624 Latest Revision: 20240624
رمز التحديث: 20240624
مُعرف محوري في PubMed: PMC11045669
DOI: 10.1007/s00330-023-10215-z
PMID: 37882836
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1084
DOI:10.1007/s00330-023-10215-z