دورية أكاديمية

Rational Design of Dual Inhibitors for Alzheimer's Disease: Insights from Computational Screening of BACE1 and GSK-3β.

التفاصيل البيبلوغرافية
العنوان: Rational Design of Dual Inhibitors for Alzheimer's Disease: Insights from Computational Screening of BACE1 and GSK-3β.
المؤلفون: Sai Varshini M; Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India., Reddy RA; Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India., Krishnamurthy PT; Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India., Selvaraj D; Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India.
المصدر: Current computer-aided drug design [Curr Comput Aided Drug Des] 2024; Vol. 20 (6), pp. 998-1012.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Bentham Science Publishers Country of Publication: United Arab Emirates NLM ID: 101265750 Publication Model: Print Cited Medium: Internet ISSN: 1875-6697 (Electronic) Linking ISSN: 15734099 NLM ISO Abbreviation: Curr Comput Aided Drug Des Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Sharjah, U.A.E. ; San Francisco, CA : Bentham Science Publishers, c2005-
مواضيع طبية MeSH: Alzheimer Disease*/drug therapy , Amyloid Precursor Protein Secretases*/antagonists & inhibitors , Amyloid Precursor Protein Secretases*/metabolism , Aspartic Acid Endopeptidases*/antagonists & inhibitors , Aspartic Acid Endopeptidases*/metabolism , Glycogen Synthase Kinase 3 beta*/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta*/metabolism , Molecular Docking Simulation* , Drug Design* , Molecular Dynamics Simulation*, Humans ; Enzyme Inhibitors/pharmacology ; Enzyme Inhibitors/chemistry
مستخلص: Background: Alzheimer's disease (AD) is one of the most concerned neurodegenerative disorders across the world characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to cognitive decline and memory loss. Targeting key pathways involved in AD like Aβ and NFT pathways, are crucial for the development of effective therapeutic strategies. In this study, we aimed to identify and establish promising dual inhibitors targeting BACE1 and GSK-3β, two proteins implicated in Aβ and NFT formation respectively.
Methods: We have used molecular docking, ADME property analysis, and MMGBSA calculations for the identification of hit molecules and further evaluation of binding affinity, drug-like properties, and stability against BACE1 and GSK-3β.
Results: Our results demonstrated strong binding affinities of ZINC000034853956 towards the active sites of both proteins, with favorable interactions involving key residues crucial for inhibitory activity. Additionally, ZINC000034853956 exhibited favorable drug-like properties. MD simulations revealed the stable binding of ZINC000034853956 to both BACE1 and GSK-3β over a 50 ns period, with consistent ligand-protein interactions, such as hydrogen bonding and hydrophobic contacts. These findings highlight the potential of ZINC000034853956 as a promising candidate for AD treatment, acting as a dual inhibitor targeting both BACE1 and GSK-3β. Overall, our study provides valuable insights into the potential of ZINC000034853956 as a dual inhibitor for AD. The strong binding affinity, favorable drug-like properties, and stability observed in MD simulations support its suitability for further optimization and preclinical studies.
Conclusion: Further investigations are warranted to elucidate the precise molecular mechanisms and therapeutic benefits of ZINC000034853956. Our findings offer hope for the development of novel therapeutic interventions targeting crucial pathways involved in AD neurodegeneration.
(Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
References: Javaid S.F.; Giebel C.; Khan M.A.B.; Hashim M.J.; Epidemiology of Alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000 Res 2021,10,425. (PMID: 10.12688/f1000research.50786.1)
2022 Alzheimer’s disease facts and figures. Alzheimers Dement 2022,18(4),700-789. (PMID: 10.1002/alz.1263835289055)
Dementia. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia (cited 2023 Sep 4).
Avila J.; Hernández F.; GSK-3 inhibitors for Alzheimer’s disease. Expert Rev Neurother 2007,7(11),1527-1533. (PMID: 10.1586/14737175.7.11.152717997701)
Tahami Monfared A.A.; Byrnes M.J.; White L.A.; Zhang Q.; The humanistic and economic burden of alzheimer’s Disease. Neurol Ther 2022,11(2),525-551. (PMID: 10.1007/s40120-022-00335-x35192176)
Zhu C.W.; Sano M.; Economic considerations in the management of Alzheimer’s disease. Clin Interv Aging 2006,1(2),143-154. (PMID: 10.2147/ciia.2006.1.2.14318044111)
Rampa A.; Gobbi S.; Concetta Di Martino R.M.; Belluti F.; Bisi A.; Dual BACE-1/GSK-3β inhibitors to combat alzheimer’s disease: A focused review. Curr Top Med Chem 2018,17(31),3361-3369. (PMID: 10.2174/1568026618666180112161406)
Goedert M.; Spillantini M.G.; A century of Alzheimer’s disease. Science 2006,314(5800),777-781. (PMID: 10.1126/science.113281417082447)
Hernández F.; Gómez de Barreda E.; Fuster-Matanzo A.; Lucas J.J.; Avila J.; GSK3: A possible link between beta amyloid peptide and tau protein. Exp Neurol 2010,223(2),322-325. (PMID: 10.1016/j.expneurol.2009.09.01119782073)
Bloom G.S.; Amyloid-β and Tau. JAMA Neurol 2014,71(4),505-508. (PMID: 10.1001/jamaneurol.2013.584724493463)
Nisbet R.M.; Götz J.; Amyloid-β and Tau in alzheimer’s disease: Novel pathomechanisms and non-pharmacological treatment strategies. J Alzheimers Dis 2018,64(s1),S517-S527. (PMID: 10.3233/JAD-17990729562514)
Busche M.A.; Hyman B.T.; Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 2020,23(10),1183-1193. (PMID: 10.1038/s41593-020-0687-632778792)
Cavalli A.; Bolognesi M.L.; Minarini A.; Rosini M.; Tumiatti V.; Recanatini M.; Melchiorre C.; Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 2008,51(3),347-372. (PMID: 10.1021/jm700936418181565)
Csermely P.; Agoston V.; Pongor S.; The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 2005,26(4),178-182. (PMID: 10.1016/j.tips.2005.02.00715808341)
Hughes R.E.; Nikolic K.; Ramsay R.R.; One for all? hitting multiple alzheimer’s disease targets with one drug. Front Neurosci 2016,10,177. (PMID: 10.3389/fnins.2016.0017727199640)
León R.; Garcia A.G.; Marco-Contelles J.; Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 2013,33(1),139-189. (PMID: 10.1002/med.2024821793014)
Teli P.; Sahiba N.; Soni J.; Sethiya A.; Agarwal D.K.; Agarwal S.; Exploration of potent multi-target-directed-ligands as anti-alzheimer’s disease agents: A moiety based review. Mini Rev Med Chem 2021,21(20),3219-3248. (PMID: 10.2174/138955752166621030411175433663363)
Das S.; Basu S.; Multi-targeting strategies for alzheimer’s disease therapeutics: Pros and Cons. Curr Top Med Chem 2017,17(27),3017-3061. (PMID: 28685694)
Coimbra J.R.M.; Marques D.F.F.; Baptista S.J.; Pereira C.M.F.; Moreira P.I.; Dinis T.C.P.; Santos A.E.; Salvador J.A.R.; Highlights in BACE1 Inhibitors for Alzheimer’s Disease Treatment. Front Chem 2018,6,178. (PMID: 10.3389/fchem.2018.0017829881722)
Das B.; Yan R.; A close look at BACE1 inhibitors for alzheimer’s disease treatment. CNS Drugs 2019,33(3),251-263. (PMID: 10.1007/s40263-019-00613-730830576)
Ghosh A.K.; Osswald H.L.; BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev 2014,43(19),6765-6813. (PMID: 10.1039/C3CS60460H24691405)
Guo T.; Hobbs D.; Development of BACE1 inhibitors for Alzheimer’s disease. Curr Med Chem 2006,13(15),1811-1829. (PMID: 10.2174/09298670677745248916787223)
Hu X.; Hicks C.W.; He W.; Wong P.; Macklin W.B.; Trapp B.D.; Yan R.; Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 2006,9(12),1520-1525. (PMID: 10.1038/nn179717099708)
Leroy K.; Yilmaz Z.; Brion J.P.; Increased level of active GSK-3? in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 2007,33(1),43-55. (PMID: 10.1111/j.1365-2990.2006.00795.x17239007)
Eldar-Finkelman H.; Martinez A.; GSK-3 inhibitors: Preclinical and clinical focus on CNS. Front Mol Neurosci 2011,4,32. (PMID: 10.3389/fnmol.2011.0003222065134)
Eldar-Finkelman H.; Licht-Murava A.; Pietrokovski S.; Eisenstein M.; Substrate competitive GSK-3 inhibitors: Strategy and implications. Biochim Biophys Acta Proteins Proteomics 2010,1804(3),598-603. (PMID: 10.1016/j.bbapap.2009.09.01019770076)
Llorens-Martín M.; Jurado J.; Hernández F.; Avila J.; GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014,7,46. (PMID: 10.3389/fnmol.2014.00046)
Doble B.W.; Woodgett J.R.; GSK-3: Tricks of the trade for a multi-tasking kinase. J Cell Sci 2003,116(7),1175-1186. (PMID: 10.1242/jcs.0038412615961)
Kypta R.M.; GSK-3 inhibitors and their potential in the treatment of Alzheimer’s disease. Expert Opin Ther Pat 2005,15(10),1315-1331. (PMID: 10.1517/13543776.15.10.1315)
Lei P.; Ayton S.; Bush A.I.; Adlard P.A.; GSK-3 in neurodegenerative diseases. Int J Alzheimers Dis 2011,2011,1-9. (PMID: 10.4061/2011/18924621629738)
Paudel P.; Seong S.H.; Zhou Y.; Ha M.T.; Min B.S.; Jung H.A.; Choi J.S.; Arylbenzofurans from the Root Bark of Morus alba as triple inhibitors of cholinesterase, β-site amyloid precursor protein cleaving enzyme 1, and glycogen synthase kinase-3β: Relevance to alzheimer’s disease. ACS Omega 2019,4(4),6283-6294. (PMID: 10.1021/acsomega.9b0019831459768)
Jiang X.; Lu H.; Li J.; Liu W.; Wu Q.; Xu Z.; Qiao Q.; Zhang H.; Gao H.; Zhao Q.; A natural BACE1 and GSK3β dual inhibitor Notopterol effectively ameliorates the cognitive deficits in APP/PS1 Alzheimer’s mice by attenuating amyloid‐β and tau pathology. Clin Transl Med 2020,10(3),e50. (PMID: 10.1002/ctm2.5032652879)
Di Martino R.M.C.; De Simone A.; Andrisano V.; Bisignano P.; Bisi A.; Gobbi S.; Rampa A.; Fato R.; Bergamini C.; Perez D.I.; Martinez A.; Bottegoni G.; Cavalli A.; Belluti F.; Versatility of the curcumin scaffold: Discovery of potent and balanced dual BACE-1 and GSK-3β inhibitors. J Med Chem 2016,59(2),531-544. (PMID: 10.1021/acs.jmedchem.5b0089426696252)
Prati F.; De Simone A.; Bisignano P.; Armirotti A.; Summa M.; Pizzirani D.; Scarpelli R.; Perez D.I.; Andrisano V.; Perez-Castillo A.; Monti B.; Massenzio F.; Polito L.; Racchi M.; Favia A.D.; Bottegoni G.; Martinez A.; Bolognesi M.L.; Cavalli A.; Multitarget drug discovery for Alzheimer’s disease: Triazinones as BACE-1 and GSK-3β inhibitors. Angew Chem Int Ed 2015,54(5),1578-1582. (PMID: 10.1002/anie.20141045625504761)
Prati F.; De Simone A.; Armirotti A.; Summa M.; Pizzirani D.; Scarpelli R.; Bertozzi S.M.; Perez D.I.; Andrisano V.; Perez-Castillo A.; Monti B.; Massenzio F.; Polito L.; Racchi M.; Sabatino P.; Bottegoni G.; Martinez A.; Cavalli A.; Bolognesi M.L.; 3,4-Dihydro-1,3,5-triazin-2(1 H)-ones as the First Dual BACE-1/GSK-3β Fragment Hits against Alzheimer’s Disease. ACS Chem Neurosci 2015,6(10),1665-1682. (PMID: 10.1021/acschemneuro.5b0012126171616)
Cole S.; Vassar R.; BACE1 structure and function in health and Alzheimer’s disease. Curr Alzheimer Res 2008,5(2),100-120. (PMID: 10.2174/15672050878395475818393796)
Vassar R.; The β-secretase, BACE: A prime drug target for Alzheimer’s disease. J Mol Neurosci 2001,17(2),157-170. (PMID: 10.1385/JMN:17:2:15711816789)
Huang W.H.; Sheng R.; Hu Y.Z.; Progress in the development of nonpeptidomimetic BACE 1 inhibitors for Alzheimer’s disease. Curr Med Chem 2009,16(14),1806-1820. (PMID: 10.2174/09298670978818617419442147)
Kumar A.; Srivastava G.; Negi A.S.; Sharma A.; Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β. J Biomol Struct Dyn 2019,37(2),275-290. (PMID: 10.1080/07391102.2018.142604329310523)
Machauer R.; Lueoend R.; Hurth K.; Veenstra S.J.; Rueeger H.; Voegtle M.; Tintelnot-Blomley M.; Rondeau J.M.; Jacobson L.H.; Laue G.; Beltz K.; Neumann U.; Discovery of Umibecestat (CNP520): A potent, selective, and efficacious β-secretase (BACE1) inhibitor for the prevention of alzheimer’s disease. J Med Chem 2021,64(20),15262-15279. (PMID: 10.1021/acs.jmedchem.1c0130034648711)
Hong L.; Tang J.; Flap position of free memapsin 2 (β-secretase), a model for flap opening in aspartic protease catalysis. Biochemistry 2004,43(16),4689-4695. (PMID: 10.1021/bi049825215096037)
Barman A.; Schürer S.; Prabhakar R.; Computational modeling of substrate specificity and catalysis of the β-secretase (BACE1) enzyme. Biochemistry 2011,50(20),4337-4349. (PMID: 10.1021/bi200081h21500768)
Fujimoto K.; Matsuoka E.; Asada N.; Tadano G.; Yamamoto T.; Nakahara K.; Fuchino K.; Ito H.; Kanegawa N.; Moechars D.; Gijsen H.J.M.; Kusakabe K.; Structure-based design of selective β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: Targeting the flap to gain selectivity over BACE2. J Med Chem 2019,62(10),5080-5095. (PMID: 10.1021/acs.jmedchem.9b0030931021626)
Yuan J.; Venkatraman S.; Zheng Y.; McKeever B.M.; Dillard L.W.; Singh S.B.; Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer’s disease. J Med Chem 2013,56(11),4156-4180. (PMID: 10.1021/jm301659n23509904)
Buch I.; Fishelovitch D.; London N.; Raveh B.; Wolfson H.J.; Nussinov R.; Allosteric regulation of glycogen synthase kinase 3β: A theoretical study. Biochemistry 2010,49(51),10890-10901. (PMID: 10.1021/bi100822q21105670)
Elangovan N.D.; Dhanabalan A.K.; Gunasekaran K.; Kandimalla R.; Sankarganesh D.; Screening of potential drug for Alzheimer’s disease: A computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. J Biomol Struct Dyn 2021,39(18),7065-7079. (PMID: 10.1080/07391102.2020.180536232779973)
He Q.; Han C.; Li G.; Guo H.; Wang Y.; Hu Y.; Lin Z.; Wang Y.; In silico design novel (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine derivatives as inhibitors for glycogen synthase kinase 3 based on 3D-QSAR, molecular docking and molecular dynamics simulation. Comput Biol Chem 2020,88,107328. (PMID: 10.1016/j.compbiolchem.2020.10732832688011)
Nassar H.; Sippl W.; Dahab R.A.; Taha M.; Molecular docking, molecular dynamics simulations and in vitro screening reveal cefixime and ceftriaxone as GSK3β covalent inhibitors. RSC Adv 2023,13(17),11278-11290. (PMID: 10.1039/D3RA01145C37057264)
Ghosh S.; Keretsu S.; Cho S.J.; 3D-QSAR, docking and molecular dynamics simulation study of C-Glycosylflavones as GSK-3and#946; inhibitors. J Chosun Nat Sci 2020,13(4),170-180.
Kumar A.; Srivastava G.; Srivastava S.; Verma S.; Negi A.S.; Sharma A.; Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: Molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer’s disease. J Mol Model 2017,23(8),239. (PMID: 10.1007/s00894-017-3396-728741112)
Kumar A.; Srivastava G.; Sharma A.; In silico interaction studies of first dual inhibitor against BACE-1/GSK-3β. In: 2016 International Conference on Bioinformatics and Systems Biology (BSB) 2016,1-4. (PMID: 10.1109/BSB.2016.7552161)
ZINC. Available from: https://zinc15.docking.org/substances/subsets/ (cited 2023 Sep 3).
Discovery of Multi-Target Agents for Neurological Diseases via Ligand Design | Request PDF. Chapter 18 Available from: https://www.researchgate.net/publication/346791653_Chapter_18_Discovery_of_Multi-Target_Agents_for_Neurological_Diseases_via_Ligand_Design (cited 2023 Sep 3).
Domínguez J.L.; Fernández-Nieto F.; Castro M.; Catto M.; Paleo M.R.; Porto S.; Sardina F.J.; Brea J.M.; Carotti A.; Villaverde M.C.; Sussman F.; Computer-aided structure-based design of multitarget leads for Alzheimer’s disease. J Chem Inf Model 2015,55(1),135-148. (PMID: 10.1021/ci500555g25483751)
Raj U.; Kumar H.; Gupta S.; Varadwaj P.K.; Exploring dual inhibitors for STAT1 and STAT5 receptors utilizing virtual screening and dynamics simulation validation. J Biomol Struct Dyn 2016,34(10),2115-2129. (PMID: 10.1080/07391102.2015.110887026471877)
Ramsay R.R.; Majekova M.; Medina M.; Valoti M.; Key targets for multi-target ligands designed to combat neurodegeneration. Front Neurosci 2016,10,375. (PMID: 10.3389/fnins.2016.0037527597816)
Pirolli D.; Righino B.; Camponeschi C.; Ria F.; Di Sante G.; De Rosa M.C.; Virtual screening and molecular dynamics simulations provide insight into repurposing drugs against SARS-CoV-2 variants Spike protein/ACE2 interface. Sci Rep 2023,13(1),1494. (PMID: 10.1038/s41598-023-28716-836707679)
Chander S.; Pandey R.K.; Penta A.; Choudhary B.S.; Sharma M.; Malik R.; Prajapati V.K.; Murugesan S.; Molecular docking and molecular dynamics simulation based approach to explore the dual inhibitor against HIV-1 reverse transcriptase and integrase. Comb Chem High Throughput Screen 2017,20(8),734-746. (PMID: 28641512)
Manandhar S.; Pai K.S.R.; Krishnamurthy P.T.; Kiran A.V.V.V.R.; Kumari G.K.; Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: A structure-based virtual screening and molecular dynamics study. Struct Chem 2022,33(5),1529-1541. (PMID: 10.1007/s11224-022-01921-335345416)
Baby K.; Maity S.; Mehta C.H.; Suresh A.; Nayak U.Y.; Nayak Y.; SARS-CoV-2 entry inhibitors by dual targeting TMPRSS2 and ACE2: An in silico drug repurposing study. Eur J Pharmacol 2021,896,173922. (PMID: 10.1016/j.ejphar.2021.17392233539819)
Ivanova L.; Tammiku-Taul J.; García-Sosa A.T.; Sidorova Y.; Saarma M.; Karelson M.; Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRα1 and small-molecule ligands. ACS Omega 2018,3(9),11407-11414. (PMID: 10.1021/acsomega.8b0152430320260)
Docking of FDA Approved Drugs Targeting NSP-16, N-Protein and Main Protease of SARS-CoV-2 as Dual Inhibitors. Biointerface Res Appl Chem Docking of FDA Approved Drugs Targeting NSP-16 2020,11(3),9848-9861. (PMID: 10.33263/BRIAC113.98489861)
P G.; M K K.; Docking studies and molecular dynamics simulation of triazole benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity. RSC Adv 2021,11(60),38079-38093. (PMID: 10.1039/D1RA07377J35498092)
Nawaz M.Z.; Attique S.A.; Ain Q.; Alghamdi H.A.; Bilal M.; Yan W.; Zhu D.; Discovery and characterization of dual inhibitors of human Vanin-1 and Vanin-2 enzymes through molecular docking and dynamic simulation-based approach. Int J Biol Macromol 2022,213,1088-1097. (PMID: 10.1016/j.ijbiomac.2022.06.01435697166)
Krishna Swaroop A.; Krishnan Namboori P.K.; Esakkimuthukumar M.; Praveen T.K.; Nagarjuna P.; Patnaik S.K.; Selvaraj J.; Leveraging decagonal in-silico strategies for uncovering IL-6 inhibitors with precision. Comput Biol Med 2023,163,107231. (PMID: 10.1016/j.compbiomed.2023.10723137421735)
فهرسة مساهمة: Keywords: AD; BACE1; GSK-3β; MMGBSA; molecular docking; molecular dynamic simulation.
المشرفين على المادة: EC 3.4.- (Amyloid Precursor Protein Secretases)
EC 3.4.23.- (Aspartic Acid Endopeptidases)
EC 2.7.11.1 (Glycogen Synthase Kinase 3 beta)
EC 3.4.23.46 (BACE1 protein, human)
0 (Enzyme Inhibitors)
تواريخ الأحداث: Date Created: 20231103 Date Completed: 20240715 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.2174/0115734099270256231018072007
PMID: 37921183
قاعدة البيانات: MEDLINE
الوصف
تدمد:1875-6697
DOI:10.2174/0115734099270256231018072007