دورية أكاديمية

Different responses of mesophilic and thermophilic anaerobic digestion of waste activated sludge to PVC microplastics.

التفاصيل البيبلوغرافية
العنوان: Different responses of mesophilic and thermophilic anaerobic digestion of waste activated sludge to PVC microplastics.
المؤلفون: Zhen ZG; College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China., Luo JX; College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China., Su Y; College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China., Xia ZY; College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China., An T; College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China., Sun ZY; College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China., Gou M; College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China. goumin@scu.edu.cn., Tang YQ; College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Dec; Vol. 30 (58), pp. 121584-121598. Date of Electronic Publication: 2023 Nov 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Sewage*/microbiology , Microplastics*, Anaerobiosis ; Plastics ; Propionates ; Bioreactors ; Bacteria ; Methane ; Temperature
مستخلص: The effect of microplastics (MPs) retained in waste activated sludge (WAS) on anaerobic digestion (AD) performance has attracted more and more attention. However, their effect on thermophilic AD remains unclear. Here, the influence of polyvinyl chloride (PVC) MPs on methanogenesis and active microbial communities in mesophilic (37 °C) and thermophilic (55 °C) AD was investigated. The results showed that 1, 5, and 10 mg/L PVC MPs significantly promoted the cumulative methane yield in mesophilic AD by 5.62%, 7.36%, and 8.87%, respectively, while PVC MPs reduced that in thermophilic AD by 13.30%, 18.82%, and 19.99%, respectively. Moreover, propionate accumulation was only detected at the end of thermophilic AD with PVC MPs. Microbial community analysis indicated that PVC MPs in mesophilic AD enriched hydrolytic and acidifying bacteria (Candidatus Competibacter, Lentimicrobium, Romboutsia, etc.) together with acetoclastic methanogens (Methanosarcina, Methanosaeta). By contrast, most carbohydrate-hydrolyzing bacteria, propionate-oxidizing bacterium (Pelotomaculum), and Methanosarcina were inhibited by PVC MPs in thermophilic AD. Network analysis further suggested that PVC MPs significantly changed the relationship of key microorganisms in the AD process. A stronger correlation among the above genera occurred in mesophilic AD, which may promote the methanogenic performance. These results suggested that PVC MPs affected mesophilic and thermophilic AD of WAS via changing microbial activities and interaction.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Andersen MH, McIlroy SJ, Nierychlo M, Nielsen PH, Albertsen M (2019) Genomic insights into Candidatus Amarolinea aalborgensis gen. nov., sp. nov., associated with settleability problems in wastewater treatment plants. Syst Appl Microbiol 42(1):77–84. https://doi.org/10.1016/j.syapm.2018.08.001. (PMID: 10.1016/j.syapm.2018.08.001)
Azizi SMM, Hai FI, Lu W, Al-Mamun A, Dhar BR (2021) A review of mechanisms underlying the impacts of (nano) microplastics on anaerobic digestion. Bioresour Technol 329:124894. https://doi.org/10.1016/j.biortech.2021.124894. (PMID: 10.1016/j.biortech.2021.124894)
Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Médigue C, Adney WS, Xu XC, Lapidus A (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19(6):1033–1043. https://doi.org/10.1101/gr.084848.108. (PMID: 10.1101/gr.084848.108)
Cantera JJL, Stein LY (2007) Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Environ Microbiol 9(3):765–776. https://doi.org/10.1111/j.1462-2920.2006.01198.x. (PMID: 10.1111/j.1462-2920.2006.01198.x)
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Nat Acad Sci 108(supplement_1):4516–4522. https://doi.org/10.1073/pnas.1000080107. (PMID: 10.1073/pnas.1000080107)
Chen H, Tang M, Yang X, Tsang YF, Wu Y, Wang D, Zhou Y (2021) Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge. Chem Eng J 408:127251. https://doi.org/10.1016/j.cej.2020.127251. (PMID: 10.1016/j.cej.2020.127251)
Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025. (PMID: 10.1016/j.marpolbul.2011.09.025)
De Bok FA, Harmsen HJ, Plugge CM, de Vries MC, Akkermans AD, de Vos WM, Stams AJ (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55(4):1697–1703. https://doi.org/10.1099/ijs.0.02880-0. (PMID: 10.1099/ijs.0.02880-0)
Djao ODN, Zhang X, Lucas S, Lapidus A, Del Rio TG, Nolan M, Tice H, Cheng J-F, Han C, Tapia R (2010) Complete genome sequence of Syntrophothermus lipocalidus type strain (TGB-C1T). Stand Genomic Sci 3(3):268. https://doi.org/10.4056/sigs.1233249. (PMID: 10.4056/sigs.1233249)
Fan N-S, Qi R, Huang B-C, Jin R-C, Yang M (2020) Factors influencing Candidatus Microthrix parvicella growth and specific filamentous bulking control: a review. Chemosphere 244:125371. https://doi.org/10.1016/j.chemosphere.2019.125371. (PMID: 10.1016/j.chemosphere.2019.125371)
Franco A, Arellano J, Albendín G, Rodríguez-Barroso R, Quiroga J, Coello M (2021) Microplastic pollution in wastewater treatment plants in the city of Cádiz: abundance, removal efficiency and presence in receiving water body. Sci Total Environ 776:145795. https://doi.org/10.1016/j.scitotenv.2021.145795. (PMID: 10.1016/j.scitotenv.2021.145795)
Griffiths RI, Whiteley AS, O'Donnell AG, Bailey M (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488–5491. https://doi.org/10.1128/AEM.66.12.5488-5491.2000. (PMID: 10.1128/AEM.66.12.5488-5491.2000)
He ZW, Yang WJ, Ren YX, Jin HY, Tang CC, Liu WZ, Yang CX, Zhou AJ, Wang AJ (2021) Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: a state-of-the-art review. Bioresour Technol 331:125035. https://doi.org/10.1016/j.biortech.2021.125035. (PMID: 10.1016/j.biortech.2021.125035)
Iino T, Mori K, Suzuki KI (2010) Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int J Syst Evol Microbiol 60(11):2563–2566. https://doi.org/10.1099/ijs.0.020131-0. (PMID: 10.1099/ijs.0.020131-0)
Jo SJ, Kwon H, Jeong SY, Lee CH, Kim TG (2016) Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors. Water Res 101(15):214–225. https://doi.org/10.1016/j.watres.2016.05.042. (PMID: 10.1016/j.watres.2016.05.042)
Jung YT, Park S, Lee JS, Yoon JH (2014) Defluviimonas aquaemixtae sp. nov., isolated from the junction between a freshwater spring and the ocean. International Journal of Systematic Evolutionary. Microbiology 64(Pt_12):4191–4197. https://doi.org/10.1099/ijs.0.068767-0. (PMID: 10.1099/ijs.0.068767-0)
Kern T, Fischer MA, Deppenmeier U, Schmitz RA, Rother M (2016) Methanosarcina flavescens sp. nov., a methanogenic archaeon isolated from a full-scale anaerobic digester. Int J Syst Evol Microbiol 66(3):1533–1538. https://doi.org/10.1099/ijsem.0.000894. (PMID: 10.1099/ijsem.0.000894)
Koeck DE, Maus I, Wibberg D, Winkler A, Zverlov VV, Liebl W, Pühler A, Schwarz WH, Schlüter A (2016) Complete genome sequence of Herbinix luporum SD1D, a new cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Genome Announc 4(4):e00687–e00616. https://doi.org/10.1128/genomeA.00687-16. (PMID: 10.1128/genomeA.00687-16)
Koendjbiharie JG, Wiersma K, van Kranenburg R (2018) Investigating the central metabolism of Clostridium thermosuccinogenes. Appl Environ Microbiol 84(13):e00363–e00318. https://doi.org/10.1128/AEM.00363-18. (PMID: 10.1128/AEM.00363-18)
Li J, Liu H, Chen JP (2018) Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–374. https://doi.org/10.1016/j.watres.2017.12.056. (PMID: 10.1016/j.watres.2017.12.056)
Li L, Geng S, Li Z, Song K (2020a) Effect of microplastic on anaerobic digestion of wasted activated sludge. Chemosphere 247:125874. https://doi.org/10.1016/j.chemosphere.2020.125874. (PMID: 10.1016/j.chemosphere.2020.125874)
Li Y, Chen Y, Wu J (2019) Enhancement of methane production in anaerobic digestion process: a review. Appl Energy 240:120–137. https://doi.org/10.1016/j.apenergy.2019.01.243. (PMID: 10.1016/j.apenergy.2019.01.243)
Li Y, Li X, Wang P, Su Y, Xie B (2022) Size-dependent effects of polystyrene microplastics on anaerobic digestion performance of food waste: focusing on oxidative stress, microbial community, key metabolic functions. J Hazard Mater 438:129493. https://doi.org/10.1016/j.jhazmat.2022.129493. (PMID: 10.1016/j.jhazmat.2022.129493)
Li Y, Liu M, Che X, Li C, Liang D, Zhou H, Liu L, Zhao Z, Zhang Y (2020b) Biochar stimulates growth of novel species capable of direct interspecies electron transfer in anaerobic digestion via ethanol-type fermentation. Environ Res 189:109983. https://doi.org/10.1016/j.envres.2020.109983. (PMID: 10.1016/j.envres.2020.109983)
Li Y, Ni J, Cheng H, Zhu A, Guo G, Qin Y, Li YY (2021) Methanogenic performance and microbial community during thermophilic digestion of food waste and sewage sludge in a high-solid anaerobic membrane bioreactor. Bioresour Technol 342:125938. https://doi.org/10.1016/j.biortech.2021.125938. (PMID: 10.1016/j.biortech.2021.125938)
Lithner D, Larsson Å, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409(18):3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038. (PMID: 10.1016/j.scitotenv.2011.04.038)
Liu C, Yuan X, Gu Y, Chen H, Sun D, Li P, Li M, Dang Y, Smith JA, Holmes DE (2020) Enhancement of bioelectrochemical CO 2 reduction with a carbon brush electrode via direct electron transfer. ACS Sustain Chem Eng 8(30):11368–11375. https://doi.org/10.1021/acssuschemeng.0c03623. (PMID: 10.1021/acssuschemeng.0c03623)
Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Evol Microbiol 49(2):545–556. https://doi.org/10.1099/00207713-49-2-545. (PMID: 10.1099/00207713-49-2-545)
Liu Y, Liu W, Yang X, Wang J, Lin H, Yang Y (2021) Microplastics are a hotspot for antibiotic resistance genes: progress and perspective. Sci Total Environ 773:145643. https://doi.org/10.1016/j.scitotenv.2021.145643. (PMID: 10.1016/j.scitotenv.2021.145643)
Lusher AL, Hurley R, Vogelsang C, Nizzetto L, Olsen M (2017) Mapping microplastics in sludge. https://doi.org/10.13140/RG.2.2.25277.56804.
Mahon AM, O’Connell B, Healy MG, O’Connor I, Officer R, Nash R, Morrison L (2017) Microplastics in sewage sludge: effects of treatment. Environ Sci Technol 51(2):810–818. https://doi.org/10.1021/acs.est.6b04048. (PMID: 10.1021/acs.est.6b04048)
Maus I, Cibis KG, Bremges A, Stolze Y, Wibberg D, Tomazetto G, Blom J, Sczyrba A, König H, Pühler A (2016) Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment. J Biotechnol 232:50–60. https://doi.org/10.1016/j.jbiotec.2016.05.001. (PMID: 10.1016/j.jbiotec.2016.05.001)
Maus I, Cibis KG, Wibberg D, Winkler A, Stolze Y, König H, Pühler A, Schlüter A (2015) Complete genome sequence of the strain Defluviitoga tunisiensis L3, isolated from a thermophilic, production-scale biogas plant. J Biotechnol 203:17–18. https://doi.org/10.1016/j.jbiotec.2015.03.006. (PMID: 10.1016/j.jbiotec.2015.03.006)
Maus I, Wibberg D, Stantscheff R, Eikmeyer FG, Seffner A, Boelter J, Szczepanowski R, Blom J, Jaenicke S, König H (2012) Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2T, isolated from a sewage sludge digester. Am Soc Microbiol.
McIlroy SJ, Albertsen M, Andresen EK, Saunders AM, Kristiansen R, Stokholm-Bjerregaard M, Nielsen KL, Nielsen PH (2014) ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J 8(3):613–624. https://doi.org/10.1038/ismej.2013.162. (PMID: 10.1038/ismej.2013.162)
Menes RJ, Muxí L (2002) Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 52(1):157–164. https://doi.org/10.1099/00207713-52-1-157. (PMID: 10.1099/00207713-52-1-157)
Mintenig SM, Int-Veen I, Löder MG, Primpke S, Gerdts G (2017) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372. https://doi.org/10.1016/j.watres.2016.11.015. (PMID: 10.1016/j.watres.2016.11.015)
Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50(11):5800–5808. https://doi.org/10.1021/acs.est.5b05416. (PMID: 10.1021/acs.est.5b05416)
Nie E, He P, Zhang H, Hao L, Shao L, Lü F (2021) How does temperature regulate anaerobic digestion? Renew Sust Energ Rev 150:111453. https://doi.org/10.1016/j.rser.2021.111453. (PMID: 10.1016/j.rser.2021.111453)
Pagani I, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Chertkov O, Davenport K, Tapia R (2011) Complete genome sequence of Desulfobulbus propionicus type strain (1pr3T). Stand Genomic Sci 4(1):100–110. https://doi.org/10.4056/sigs.1613929. (PMID: 10.4056/sigs.1613929)
Parsai T, Figueiredo N, Dalvi V, Martins M, Malik A, Kumar A (2022) Implication of microplastic toxicity on functioning of microalgae in aquatic system. Environ Pollut 308:119626. https://doi.org/10.1016/j.envpol.2022.119626. (PMID: 10.1016/j.envpol.2022.119626)
Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Krader PE, Tang J (2006) Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at -5 degrees C, isolated from penguin guano in Chilean Patagonia. Int J Syst Evol Microbiol 56(9):2055–2062. https://doi.org/10.1099/ijs.0.64225-0. (PMID: 10.1099/ijs.0.64225-0)
Ren HY, Wang XW, Kong F, Zhao L, Xing D, Ren NQ, Liu BF (2022a) Enhanced semi-continuous hydrogen production by addition of microplastics under mesophilic and thermophilic fermentation. Fuel 315:123247. https://doi.org/10.1016/j.fuel.2022.123247. (PMID: 10.1016/j.fuel.2022.123247)
Ren Y, Yu G, Shi C, Liu L, Guo Q, Han C, Zhang D, Zhang L, Liu B, Gao H et al (2022b) Majorbio Cloud: a one-stop, comprehensive bioinformatic platform for multi-omics analyses. iMeta 1:e12. https://doi.org/10.1002/imt2.12. (PMID: 10.1002/imt2.12)
Sasaki K, Morita M, Sasaki D, Nagaoka J, Matsumoto N, Ohmura N, Shinozaki H (2011) Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J Biosci Bioeng 112(5):469–472. https://doi.org/10.1016/j.jbiosc.2011.07.003. (PMID: 10.1016/j.jbiosc.2011.07.003)
Sekiguchi Y, Imachi H, Susilorukmi A, Muramatsu M, Ohashi A, Harada H, Hanada S, Kamagata Y (2006) Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol-and lactate-degrading bacterium isolated from thermophilic digested sludges. Int J Syst Evol Microbiol 56(7):1621–1629. https://doi.org/10.1099/ijs.0.64112-0. (PMID: 10.1099/ijs.0.64112-0)
Shrestha S, Fonoll X, Khanal SK, Raskin L (2017) Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. Bioresour Technol 245:1245–1257. https://doi.org/10.1016/j.biortech.2017.08.089. (PMID: 10.1016/j.biortech.2017.08.089)
Silva AB, Bastos AS, Justino CI, da Costa JP, Duarte AC, Rocha-Santos TA (2018) Microplastics in the environment: challenges in analytical chemistry—a review. Anal Chim Acta 1017:1–19. https://doi.org/10.1016/j.aca.2018.02.043. (PMID: 10.1016/j.aca.2018.02.043)
Srinivas T, Anil Kumar P, Sasikala C, Ramana CV, Imhoff JF (2007) Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description of the genus Rhodobacter. Int J Syst Evol Microbiol 57(9):1984–1987. https://doi.org/10.1099/ijs.0.65077-0. (PMID: 10.1099/ijs.0.65077-0)
Sun J, Dai X, Wang Q, Van Loosdrecht MC, Ni B-J (2019) Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res 152:21–37. https://doi.org/10.1016/j.watres.2018.12.050. (PMID: 10.1016/j.watres.2018.12.050)
Sun L, Toyonaga M, Ohashi A, Tourlousse DM, Matsuura N, Meng XY, Tamaki H, Hanada S, Cruz R, Yamaguchi T (2016) Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. Int J Syst Evol Microbiol 66(7):2635–2642. https://doi.org/10.1099/ijsem.0.001103. (PMID: 10.1099/ijsem.0.001103)
Tang N, Liu X, Xing W (2020) Microplastics in wastewater treatment plants of Wuhan, Central China: abundance, removal, and potential source in household wastewater. Sci Total Environ 745:141026. https://doi.org/10.1016/j.scitotenv.2020.141026. (PMID: 10.1016/j.scitotenv.2020.141026)
Tang YQ, Ji P, Hayashi J, Koike Y, Wu XL, Kida K (2011) Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding. Appl Microbiol Biotechnol 91:1447–1461. https://doi.org/10.1007/s00253-011-3479-9. (PMID: 10.1007/s00253-011-3479-9)
Tang Y, Shigematsu T, Morimura S, Kida K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99(2):150–164. https://doi.org/10.1263/jbb.99.150. (PMID: 10.1263/jbb.99.150)
Tao Y, Ersahin ME, Ghasimi DS, Ozgun H, Wang H, Zhang X, Guo M, Yang Y, Stuckey DC, van Lier JB (2020) Biogas productivity of anaerobic digestion process is governed by a core bacterial microbiota. Chem Eng J 380:122425. https://doi.org/10.1016/j.cej.2019.122425. (PMID: 10.1016/j.cej.2019.122425)
Van Do M, Le TXT, Vu ND, Dang TT (2022) Distribution and occurrence of microplastics in wastewater treatment plants. Environ Technol Innov 26:102286. https://doi.org/10.1016/j.eti.2022.102286. (PMID: 10.1016/j.eti.2022.102286)
Vaneechoutte M, Janssens M, Avesani V, Delmée M, Deschaght P (2013) Description of Acidovorax wautersii sp. nov. to accommodate clinical isolates and an environmental isolate, most closely related to Acidovorax avenae. Int J Syst Evol Microbiol 63(Pt_6):2203–2206. https://doi.org/10.1099/ijs.0.046102-0. (PMID: 10.1099/ijs.0.046102-0)
Wang Y, Song J, Zhai Y, Zhang C, Gerritsen J, Wang H, Chen X, Li Y, Zhao B, Zhao B (2015) Romboutsia sedimentorum sp. nov., isolated from an alkaline-saline lake sediment and emended description of the genus Romboutsia. Int J Syst Evol Microbiol 65(Pt_4):1193–1198. https://doi.org/10.1099/ijs.0.000079. (PMID: 10.1099/ijs.0.000079)
Wei W, Huang QS, Sun J, Wang JY, Wu SL, Ni BJ (2019) Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environ Sci Technol 53(5):2509–2517. https://doi.org/10.1021/acs.est.8b07069. (PMID: 10.1021/acs.est.8b07069)
Westerholm M, Roos S, Schnürer A (2010) Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309(1):100–104. https://doi.org/10.1111/j.1574-6968.2010.02023.x. (PMID: 10.1111/j.1574-6968.2010.02023.x)
Willems A, Falsen E, Pot B, Jantzen E, Hoste B, Vandamme P, Gillis M, Kersters K, De Ley J (1990) Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Evol Microbiol 40(4):384–398. https://doi.org/10.1099/00207713-40-4-384. (PMID: 10.1099/00207713-40-4-384)
Wolterink A, Kim S, Muusse M, Kim IS, Roholl PJ, van Ginkel CG, Stams AJ, Kengen SW (2005) Dechloromonas hortensis sp. nov. and strain ASK-1, two novel (per) chlorate-reducing bacteria, and taxonomic description of strain GR-1. Int J Syst Evol Microbiol 55(5):2063–2068. https://doi.org/10.1099/ijs.0.63404-0. (PMID: 10.1099/ijs.0.63404-0)
Wu C, Dong X, Liu X (2007) Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov. comb. nov. Syst Appl Microbiol 30(5):376–380. https://doi.org/10.1016/j.syapm.2006.12.001. (PMID: 10.1016/j.syapm.2006.12.001)
Wu ZL, Lin Z, Sun ZY, Gou M, Xia ZY, Tang YQ (2020) A comparative study of mesophilic and thermophilic anaerobic digestion of municipal sludge with highsolids content: reactor performance and microbial community. Bioresour Technol 302:122851. https://doi.org/10.1016/j.biortech.2020.122851. (PMID: 10.1016/j.biortech.2020.122851)
Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15(10):2631–2641. https://doi.org/10.1111/1462-2920.12173. (PMID: 10.1111/1462-2920.12173)
Zhang J, Zhao M, Li C, Miao H, Huang Z, Dai X, Ruan W (2020a) Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion. Ecotoxicol Environ Saf 205:111095. https://doi.org/10.1016/j.ecoenv.2020.111095. (PMID: 10.1016/j.ecoenv.2020.111095)
Zhang Q, Fan D, Pang X, Zhu W, Zhao J, Xu J (2021) Effects of polyethylene microplastics on the fate of antibiotic resistance genes and microbial communities in anaerobic digestion of dairy wastes. J Clean Prod 292:125909. https://doi.org/10.1016/j.jclepro.2021.125909. (PMID: 10.1016/j.jclepro.2021.125909)
Zhang Q, Hu J, Lee DJ, Chang Y, Lee YJ (2017) Sludge treatment: current research trends. Bioresour Technol 243:1159–1172. https://doi.org/10.1016/j.biortech.2017.07.070. (PMID: 10.1016/j.biortech.2017.07.070)
Zhang YT, Wei W, Huang QS, Wang C, Wang Y, Ni BJ (2020b) Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. Water Res 179:115898. https://doi.org/10.1016/j.watres.2020.115898. (PMID: 10.1016/j.watres.2020.115898)
فهرسة مساهمة: Keywords: Active microbial community; Anaerobic digestion; PVC microplastics; Methane production; Microbial response
المشرفين على المادة: 0 (Sewage)
0 (Microplastics)
0 (Plastics)
0 (Propionates)
OP0UW79H66 (Methane)
تواريخ الأحداث: Date Created: 20231113 Date Completed: 20231218 Latest Revision: 20231227
رمز التحديث: 20231227
DOI: 10.1007/s11356-023-30935-5
PMID: 37957495
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-30935-5