دورية أكاديمية

Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida.

التفاصيل البيبلوغرافية
العنوان: Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida.
المؤلفون: Tian H; The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China.; University of the Chinese Academy of Sciences, Beijing, 100049, China., Zhang H; University of the Chinese Academy of Sciences, Beijing, 100049, China.; Beijing Institute of Genomics, Chinese Academy of Sciences, National Center for Bioinformation, Beijing, 100101, China., Huang H; The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China., Zhang Y; The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China., Xue Y; The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China.; University of the Chinese Academy of Sciences, Beijing, 100049, China.; Beijing Institute of Genomics, Chinese Academy of Sciences, National Center for Bioinformation, Beijing, 100101, China.
المصدر: Journal of integrative plant biology [J Integr Plant Biol] 2024 May; Vol. 66 (5), pp. 986-1006. Date of Electronic Publication: 2024 Jan 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Pub Country of Publication: China (Republic : 1949- ) NLM ID: 101250502 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-7909 (Electronic) Linking ISSN: 16729072 NLM ISO Abbreviation: J Integr Plant Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: [China] : Wiley-Blackwell Pub
Original Publication: [Carlton South, Victoria] : Blackwell Pub., 2005-
مواضيع طبية MeSH: Petunia*/genetics , Petunia*/metabolism , Ribonucleases*/metabolism , Ribonucleases*/genetics , Self-Incompatibility in Flowering Plants*/genetics , Pollen Tube*/growth & development , Pollen Tube*/metabolism , Pollen Tube*/genetics , Plant Proteins*/metabolism , Plant Proteins*/genetics, Flowers/genetics ; Phase Separation
مستخلص: Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the Skip Cullin F-box (SCF) SLF -mediated ubiquitin-proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin-binding proteins, including the actin polymerization factor PhABRACL, the actin polymerization activity of which is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.
(© 2023 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.)
References: Abhinandan, K., Sankaranarayanan, S., Macgregor, S., Goring, D.R., and Samuel, M.A. (2022). Cell‐cell signaling during the Brassicaceae self‐incompatibility response. Trends Plant Sci. 27: 472–487.
Alberti, S., Gladfelter, A., and Mittag, T. (2019). Considerations and challenges in studying liquid‐liquid phase separation and biomolecular condensates. Cell 176: 419–434.
Anderson, M.A., Cornish, E.C., Mau, S.L., Williams, E.G., Hoggart, R., Atkinson, A., Bonig, I., Grego, B., Simpson, R., Roche, P.J., et al. (1986). Cloning of cDNA for a stylar glycoprotein associated with expression of self‐incompatibility in Nicotiana alata. Nature 321: 38–44.
Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18: 285–298.
Boeynaems, S., Alberti, S., Fawzi, N.L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., et al. (2018). Protein phase separation: A new phase in cell biology. Trends Cell Biol. 28: 420–435.
Boivin, N., Morse, D., and Cappadocia, M. (2014). Degradation of S‐RNase in compatible pollen tubes of Solanum chacoense inferred by immunogold labeling. J. Cell Sci. 127: 4123–4127.
Bosch, M., and Franklin‐Tong, V.E. (2007). Temporal and spatial activation of caspase‐like enzymes induced by self‐incompatibility in Papaver pollen. Proc. Natl. Acad. Sci. U.S.A 104: 18327–18332.
Cantalapiedra, C.P., Hern̗andez‐Plaza, A., Letunic, I., Bork, P., and Huerta‐Cepas, J. (2021). eggNOG‐mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38: 5825–5829.
Chen, J., Wang, P., de Graaf, B.H.J., Zhang, H., Jiao, H., Tang, C., Zhang, S., and Wu, J. (2018). Phosphatidic acid counteracts S‐RNase signaling in pollen by stabilizing the actin cytoskeleton. Plant Cell 30: 1023–1039.
De Nettancourt, D. (2001). Incompatibility and Incongruity in Wild and Cultivated plants (Berlin: Springer Verlag).
Dorone, Y., Boeynaems, S., Flores, E., Jin, B., Hateley, S., Bossi, F., Lazarus, E., Pennington, J.G., Michiels, E., De Decker, M., et al. (2021). A prion‐like protein regulator of seed germination undergoes hydration‐dependent phase separation. Cell 184: 4284–4298.
Eaves, D.J., Flores‐Ortiz, C., Haque, T., Lin, Z., Teng, N., and Franklin‐Tong, V.E. (2014). Self‐incompatibility in Papaver: Advances in integrating the signalling network. Biochem. Soc. Trans. 42: 370–376.
Entani, T., Kubo, K., Isogai, S., Fukao, Y., Shirakawa, M., Isogai, A., and Takayama, S. (2014). Ubiquitin‐proteasome‐mediated degradation of S‐RNase in a solanaceous cross‐compatibility reaction. Plant J. 78: 1014–1021.
Fang, X.D., Gao, Q., Zang, Y., Qiao, J.H., Gao, D.M., Xu, W.Y., Wang, Y., Li, D., and Wang, X.B. (2022). Host casein kinase 1‐mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection. eLife 11: e74884.
Franklin‐Tong, V.E. (2008). Self‐Incompatibility Systems in Flowering Plants: Evolution, Diversity, and Mechanisms (Heidelberg: Springer Verlag).
Franklin‐Tong, V.E., Hackett, G., and Hepler, P.K. (1997). Ratio‐imaging of Ca2+ in the self‐incompatibility response in pollen tubes of Papaver rhoeas. Plant J. 12: 1375–1386.
Fujii, S., Kubo, K.I., and Takayama, S. (2016). Non‐self‐ and self‐recognition models in plant self‐incompatibility. Nat. Plants 2: 16130.
Gao, Y., Li, X., Li, P., and Lin, Y. (2022). A brief guideline for studies of phase‐separated biomolecular condensates. Nat. Chem. Biol. 18: 1307–1318.
Goldraij, A., Kondo, K., Lee, C.B., Hancock, C.N., Sivaguru, M., Vazquez‐Santana, S., Kim, S., Phillips, T.E., Cruz‐Garcia, F., and McClure, B. (2006). Compartmentalization of S‐RNase and HT‐B degradation in self‐incompatible Nicotiana. Nature 439: 805–810.
Goldraij, A., Roldán, J.A., and Rojas, H.J. (2012). Early F‐actin disorganization may be signaling vacuole disruption in incompatible pollen tubes of Nicotiana alata. Plant Signal. Behav. 7: 1695–1697.
Goring, D.R., Bosch, M., and Franklin‐Tong, V.E. (2023). Contrasting self‐recognition rejection systems for self‐incompatibility in Brassica and Papaver. Curr. Biol. 33: R530–R542.
Haque, T., Eaves, D.J., Lin, Z., Zampronio, C.G., Cooper, H.J., Bosch, M., Smirnoff, N., and Franklin‐Tong, V.E. (2020). Self‐incompatibility triggers irreversible oxidative modification of proteins in incompatible pollen. Plant Physiol. 183: 1391–1404.
Huang, S., Blanchoin, L., Chaudhry, F., Franklin‐Tong, V.E., and Staiger, C.J. (2004). A gelsolin‐like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium‐regulated severing and depolymerization of actin filaments. J. Biol. Chem. 279: 3364–23375.
Huang, X., Chen, S., Li, W., Tang, L., Zhang, Y., Yang, N., Zou, Y., Zhai, X., Xiao, N., Liu, W., et al. (2021). ROS regulated reversible protein phase separation synchronizes plant flowering. Nat. Chem. Biol. 17: 549–557.
Huerta‐Cepas, J., Szklarczyk, D., Heller, D., Hernández‐Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., et al. (2019). EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47: D309–D314.
Juárez‐Díaz, J.A., McClure, B., Vázquez‐Santana, S., Guevara‐García, A., León‐Mejía, P., Márquez‐Guzmán, J., and Cruz‐García, F. (2006). A novel thioredoxin h is secreted in Nicotiana alata and reduces S‐RNase in vitro. J. Biol. Chem. 281: 3418–3424.
Kato, M., Yang, Y.S., Sutter, B.M., Wang, Y., McKnight, S.L., and Tu, B.P. (2019). Redox state controls phase separation of the yeast Ataxin‐2 protein via reversible oxidation of its methionine‐rich low‐complexity domain. Cell 177: 711–721.
Kong, X.X., Mei, J.W., Zhang, J., Liu, X., Wu, J.Y., and Wang, C.L. (2021). Turnover of diacylglycerol kinase 4 by cytoplasmic acidification induces vacuole morphological change and nuclear DNA degradation in the early stage of pear self‐incompatibility response. J. Integr. Plant. Biol. 63: 2123–2135.
Kubo, K., Entani, T., Takara, A., Wang, N., Fields, A.M., Hua, Z., Toyoda, M., Kawashima, S., Ando, T., Isogai, A., et al. (2010). Collaborative non‐self recognition system in S‐RNase‐based self‐incompatibility. Science 330: 796–799.
Lai, Z., Ma, W., Han, B., Liang, L., Zhang, Y., Hong, G., and Xue, Y. (2002). An F‐box gene linked to the self‐incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol. Biol. 50: 29–41.
Lee, H.S., Huang, S., and Kao, T.H. (1994). S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367: 560–563.
Lee, S., Enciso‐Rodriguez, F.E., Behling, W., Jayakody, T., Panicucci, K., Zarka, D., Nadakuduti, S.S., Buell, C.R., Manrique‐Carpintero, N.C., and Douches, D.S. (2023). HT‐B and S‐RNase CRISPR‐Cas9 double knockouts show enhanced self‐fertility in diploid Solanum tuberosum. Front. Plant Sci. 14: 1151347.
Li, J., Zhang, Y., Song, Y., Zhang, H., Fan, J., Li, Q., Zhang, D., and Xue, Y. (2017). Electrostatic potentials of the S‐locus F‐box proteins contribute to the pollen S specificity in self‐incompatibility in Petunia hybrida. Plant J. 89: 45–57.
Li, S., Williams, J.S., Sun, P., and Kao, T.H. (2016). All 17 S‐locus F‐box proteins of the S2‐ and S3‐haplotypes of Petunia inflata are assembled into similar SCF complexes with a specific function in self‐incompatibility. Plant J. 87: 606–616.
Li, W., and Chetelat, R.T. (2010). A pollen factor linking inter‐ and intraspecific pollen rejection in tomato. Science 330: 1827–1830.
Li, W., Meng, D., Gu, Z., Yang, Q., Yuan, H., Li, Y., Chen, Q., Yu, J., Liu, C., and Li, T. (2018). Apple S‐RNase triggers inhibition of tRNA aminoacylation by interacting with a soluble inorganic pyrophosphatase in growing self‐pollen tubes in vitro. New Phytol. 218: 579–593.
Liang, M., Cao, Z., Zhu, A., Liu, Y., Tao, M., Yang, H., Xu, Q., Wang, S., Liu, J., Li, Y., et al. (2020). Evolution of self‐compatibility by a mutant Sm‐RNase in citrus. Nat. Plants 6: 131–142.
Liao, F., Wang, L., Yang, L.B., Zhang, L., Peng, X., and Sun, M.X. (2013). Antisense oligodeoxynucleotide inhibition as an alternative and convenient method for gene function analysis in pollen tubes. PLoS ONE 8: e59112.
Liu, B., Morse, D., and Cappadocia, M. (2009). Compatible pollinations in Solanum chacoense decrease both S‐RNase and S‐RNase mRNA. PLoS ONE 4: e5774.
Liu, W., Fan, J., Li, J., Song, Y., Li, Q., Zhang, Y., and Xue, Y. (2014). SCFSLF‐mediated cytosolic degradation of S‐RNase is required for cross‐pollen compatibility in S‐RNase‐based self‐incompatibility in Petunia hybrida. Front. Genet. 5: 228.
Lush, W.M., and Clarke, A.E. (1997). Observations of pollen tube growth in Nicotiana alata and their implications for the mechanism of self‐incompatibility. Sex. Plant Reprod. 10: 27–35.
Luu, D., Qin, X., Morse, D., and Cappadocia, M. (2000). S‐RNase uptake by compatible pollen tubes in gametophytic self‐incompatibility. Nature 407: 649–651.
McClure, B., Mou, B., Canevascini, S., and Bernatzky, R. (1999). A small asparagine‐rich protein required for S‐allele‐specific pollen rejection in Nicotiana. Proc. Natl. Acad. Sci. U.S.A. 96: 13548–13553.
McClure, B.A., Gray, J.E., Anderson, M.A., and Clarke, A.E. (1990). Self‐incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347: 757–760.
McClure, B.A., Haring, V., Ebert, P.R., Anderson, M.A., Simpson, R.J., Sakiyama, F., and Clarke, A.E. (1989). Style self‐incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342: 955–957.
Mészáros, B., Erdös, G., and Dosztányi, Z. (2018). IUPred2A: Context‐dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46: W329–W337.
Mizuta, Y., and Higashiyama, T. (2014). Antisense gene inhibition by phosphorothioate antisense oligonucleotide in Arabidopsis pollen tubes. Plant J. 78: 516–526.
Murfett, J., Atherton, T.L., Mou, B., Gassert, C.S., and McClure, B.A. (1994). S‐RNase expressed in transgenic Nicotiana causes S‐allele‐specific pollen rejection. Nature 367: 563–566.
Poulter, N.S., Staiger, C.J., Rappoport, J.Z., and Franklin‐Tong, V.E. (2010). Actin‐binding proteins implicated in the formation of the punctate actin foci stimulated by the self‐incompatibility response in Papaver. Plant Physiol. 152: 1274–1283.
Puerta, A.R., Ushijima, K., Koba, T., and Sassa, H. (2009). Identification and functional analysis of pistil self‐incompatibility factor HT‐B of Petunia. J. Exp. Bot. 60: 1309–1318.
Qiao, H., Wang, F., Zhao, L., Zhou, J., Lai, Z., Zhang, Y., Robbins, T.P., and Xue, Y. (2004a). The F‐Box protein AhSLF‐S2 controls the pollen function of S‐RNase‐based self‐incompatibility. Plant Cell 16: 2307–2322.
Qiao, H., Wang, H., Zhao, L., Zhou, J., Huang, J., Zhang, Y., and Xue, Y. (2004b). The F‐box protein AhSLF‐S2 physically interacts with S‐RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16: 582–595.
Qin, X., Liu, B., Soulard, J., Morse, D., and Cappadocia, M. (2006). Style‐by‐style analysis of two sporadic self‐compatible Solanum chacoense lines supports a primary role for S‐RNases in determining pollen rejection thresholds. J. Exp. Bot. 57: 2001–2013.
Rudd, J.J., Franklin, F.C.H., Lord, J.M., and Franklin‐Tong, V.E. (1996). Increased phosphorylation of a 26‐kD pollen protein is induced by the self‐incompatibility response in Papaver rhoeas. Plant Cell 8: 713–724.
Serrano, I., Romero‐Puertas, M.C., Sandalio, L.M., and Olmedilla, A. (2015). The role of reactive oxygen species and nitric oxide in programmed cell death associated with self‐incompatibility. J. Exp. Bot. 66: 2869–2876.
Sijacic, P., Wang, X., Skirpan, A.L., Wang, Y., Dowd, P.E., McCubbin, A.G., Huang, S., and Kao, T.H. (2004). Identification of the pollen determinant of S‐RNase‐mediated self‐incompatibility. Nature 429: 302–305.
Smertenko, A., and Franklin‐Tong, V.E. (2011). Organisation and regulation of the cytoskeleton in plant programmed cell death. Cell Death Differ. 18: 1263–1270.
Snowman, B.N., Kovar, D.R., Shevchenko, G., Franklin‐Tong, V.E., and Staiger, C.J. (2002). Signal‐mediated depolymerization of actin in pollen during the self‐incompatibility response. Plant Cell 14: 2613–2626.
Sun, H., Zhu, X., Li, C., Ma, Z., Han, X., Luo, Y., Yang, L., Yu, J., and Miao, Y. (2021). Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat. Commun. 12: 4064.
Sun, L., Williams, J.S., Li, S., Wu, L., Khatri, W.A., Stone, P.G., Keebaugh, M.D., and Kao, T.H. (2018). S‐locus F‐Box proteins are solely responsible for S‐RNase‐based self‐incompatibility of Petunia pollen. Plant Cell 30: 2959–2972.
Takayama, S., and Isogai, A. (2005). Self‐incompatibility in plants. Annu. Rev. Plant Biol. 56: 467–489.
Tan, W., Cheng, S., Li, Y., Li, X.Y., Lu, N., Sun, J., Tang, G., Yang, Y., Cai, K., Li, X., et al. (2022). Phase separation modulates the assembly and dynamics of a polarity‐related scaffold‐signaling hub. Nat. Commun. 13: 7181.
Thomas, S.G., Huang, S., Li, S., Staiger, C.J., and Franklin‐Tong, V.E. (2006). Actin depolymerization is sufficient to induce programmed cell death in self‐incompatible pollen. J. Cell Biol. 17: 221–229.
Torres‐Rodríguez, M.D., Cruz‐Zamora, Y., Juárez‐Díaz, J.A., Mooney, B., McClure, B.A., and Cruz‐García, F. (2020). NaTrxh is an essential protein for pollen rejection in Nicotiana by increasing S‐RNase activity. Plant J. 103: 1304–1317.
Ushijima, K., Sassa, H., Dandekar, A.M., Gradziel, T.M., Tao, R., and Hirano, H. (2003). Structural and transcriptional analysis of the self‐incompatibility locus of almond: Identification of a pollen‐expressed F‐box gene with haplotype‐specific polymorphism. Plant Cell 15: 771–781.
Wang, B., Zhang, H., Huai, J., Peng, F., Wu, J., Lin, R., and Fang, X. (2022). Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat. Chem. Biol. 18: 1361–1369.
Wang, C.L., Wu, J., Xu, G.H., Gao, Y.B., Chen, G., Wu, J.Y., Wu, H.Q., and Zhang, S.L. (2010). S‐RNase disrupts tip‐localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. J. Cell Sci. 123: 4301–4309.
Wang, L., Lin, Z., Triviño, M., Nowack, M.K., Franklin‐Tong, V.E., and Bosch, M. (2019). Self‐incompatibility in Papaver pollen: Programmed cell death in an acidic environment. J. Exp. Bot. 70: 2113–2123.
Wang, L., Triviño, M., Lin, Z., Carli, J., Eaves, D.J., Van Damme, D., Nowack, M.K., Franklin‐Tong, V.E., and Bosch, M. (2020). New opportunities and insights into Papaver self‐incompatibility by imaging engineered Arabidopsis pollen. J. Exp. Bot. 71: 2451–2463.
Wilkins, K.A., Bancroft, J., Bosch, M., Ings, J., Smirnoff, N., and Franklin‐Tong, V.E. (2011). Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self‐incompatibility response of papaver. Plant Physiol. 156: 404–416.
Wilkins, K.A., Bosch, M., Haque, T., Teng, N., Poulter, N.S., and Franklin‐Tong, V.E. (2015). Self‐incompatibility‐induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol. Plant Physiol. 167: 766–779.
Xie, Z., Zhao, S., Li, Y., Deng, Y., Shi, Y., Chen, X., Li, Y., Li, H., Chen, C., Wang, X., et al. (2023). Phenolic acid‐induced phase separation and translation inhibition mediate plant interspecific competition. Nat. Plants 9: 1481–1499.
Xue, Y., Carpenter, R., Dickinson, H.G., and Coen, E.S. (1996). Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8: 805–814.
Yang, Q., Meng, D., Gu, Z., Li, W., Chen, Q., Li, Y., Yuan, H., Yu, J., Liu, C., and Li, T. (2018). Apple S‐RNase interacts with an actin‐binding protein, MdMVG, to reduce pollen tube growth by inhibiting its actin‐severing activity at the early stage of self‐pollination induction. Plant J. 95: 41–56.
Yoshida, K., and Hisabori, T. (2019). Simple method to determine protein redox state in Arabidopsis thaliana. Bio‐Protocol 9: e3250.
Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). ClusterProfiler: An R package for comparing biological themes among gene clusters. Omics. 16: 284–287.
Zakharova, E.V., Timofeeva, G.V., Fateev, A.D., and Kovaleva, L.V. (2021). Caspase‐like proteases and the phytohormone cytokinin as determinants of S‐RNAse‐based self‐incompatibility–induced PCD in Petunia hybrida L. Protoplasma 258: 573–586.
Zavaliev, R., Mohan, R., Chen, T., and Dong, X. (2020). Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182: 1093–1108.
Zhang, Y., Zhao, Z., and Xue, Y. (2009). Roles of proteolysis in plant self‐incompatibility. Annu. Rev. Plant Biol. 60: 21–42.
Zhao, H., Song, Y., Li, J., Zhang, Y., Huang, H., Li, Q., Zhang, Y., and Xue, Y. (2021). Primary restriction of S‐RNase cytotoxicity by a stepwise ubiquitination and degradation pathway in Petunia hybrida. New Phytol. 231: 1249–1264.
Zhao, H., Zhang, Y., Zhang, H., Song, Y., Zhao, F., Zhang, Y., Zhu, S., Zhang, H., Zhou, Z., Guo, H., et al. (2022). Origin, loss, and regain of self‐incompatibility in angiosperms. Plant Cell 34: 579–596.
Zhao, L., Huang, J., Zhao, Z., Li, Q., Sims, T.L., and Xue, Y. (2010). The Skp1‐like protein SSK1 is required for cross‐pollen compatibility in S‐RNase‐based self‐incompatibility. Plant J. 62: 52–63.
Zhang, T., Noll, S.E., Peng, J.T., Klair, A., Tripka, A., Stutzman, N., Cheng, C., Zare, R.N., and Dickinson, A.J. (2023). Chemical imaging reveals diverse functions of tricarboxylic acid metabolites in root growth and development. Nat. Commun. 14: 2567.
معلومات مُعتمدة: 32030007 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: S‐RNase; phase separation; self‐incompatibility
المشرفين على المادة: EC 3.1.- (Ribonucleases)
EC 3.1.4.- (ribonuclease S)
0 (Plant Proteins)
تواريخ الأحداث: Date Created: 20231114 Date Completed: 20240527 Latest Revision: 20240527
رمز التحديث: 20240527
DOI: 10.1111/jipb.13584
PMID: 37963073
قاعدة البيانات: MEDLINE
الوصف
تدمد:1744-7909
DOI:10.1111/jipb.13584