دورية أكاديمية

From Fish Physiology to Human Disease: The Discovery of the NCC, NKCC2, and the Cation-Coupled Chloride Cotransporters.

التفاصيل البيبلوغرافية
العنوان: From Fish Physiology to Human Disease: The Discovery of the NCC, NKCC2, and the Cation-Coupled Chloride Cotransporters.
المؤلفون: Gamba G; Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.
المصدر: Kidney360 [Kidney360] 2024 Jan 01; Vol. 5 (1), pp. 133-141. Date of Electronic Publication: 2023 Nov 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wolters Kluwer Health, Inc. on behalf of the American Society of Nephrology Country of Publication: United States NLM ID: 101766381 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2641-7650 (Electronic) Linking ISSN: 26417650 NLM ISO Abbreviation: Kidney360 Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : [Hagerstown, MD] : Wolters Kluwer Health, Inc. on behalf of the American Society of Nephrology
Original Publication: [Washington, DC] : American Society of Nephrology, [2020]-
مواضيع طبية MeSH: Chlorides*/metabolism , Sodium-Potassium-Chloride Symporters*/genetics , Sodium-Potassium-Chloride Symporters*/metabolism, Animals ; Humans ; Cations/metabolism ; Diuretics/metabolism ; Kidney Tubules, Distal/metabolism ; Sodium/metabolism ; Sodium Chloride/metabolism ; Solute Carrier Family 12, Member 3/metabolism ; Thiazides/metabolism ; Solute Carrier Family 12, Member 1
مستخلص: The renal Na-K-2Cl and Na-Cl cotransporters are the major salt reabsorption pathways in the thick ascending limb of Henle loop and the distal convoluted tubule, respectively. These transporters are the target of the loop and thiazide type diuretics extensively used in the world for the treatment of edematous states and arterial hypertension. The diuretics appeared in the market many years before the salt transport systems were discovered. The evolving of the knowledge and the cloning of the genes encoding the Na-K-2Cl and Na-Cl cotransporters were possible thanks to the study of marine species. This work presents the history of how we came to know the mechanisms for the loop and thiazide type diuretics actions, the use of marine species in the cloning process of these cotransporters and therefore in the whole solute carrier cotransproters 12 (SLC12) family of electroneutral cation chloride cotransporters, and the disease associated with each member of the family.
(Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Society of Nephrology.)
References: Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev. 2005;85(2):423–493. doi: 10.1152/physrev.00011.2004. (PMID: 10.1152/physrev.00011.2004)
Novello FC, Sprague JM. Benzothiadiazine dioxides as novel diuretics. J Am Chem Soc. 1957;79(8):2028–2029. doi: 10.1021/ja01565a079. (PMID: 10.1021/ja01565a079)
Malnic F, Vieira FL, Enokibara H. Effect of “Furosemid” on chloride and water excretion in single nephrons of the kidney of the rat. Nature. 1965;208(5005):80–81. doi: 10.1038/208080b0. (PMID: 10.1038/208080b0)
Greger R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch. 1981;390(1):38–43. doi: 10.1007/BF00582708. (PMID: 10.1007/BF00582708)
Greger R, Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1981;392(1):92–94. doi: 10.1007/BF00584588. (PMID: 10.1007/BF00584588)
Hebert SC, Culpepper RM, Andreoli TE. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Physiol. 1981;241(4):F412–F431. doi: 10.1152/ajprenal.1981.241.4.F412. (PMID: 10.1152/ajprenal.1981.241.4.F412)
Geck P, Pietrzyk C, Burckhardt BC, Pfeiffer B, Heinz E. Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. Biochim Biophys Acta. 1980;600(2):432–447. doi: 10.1016/0005-2736(80)90446-0. (PMID: 10.1016/0005-2736(80)90446-0)
Diamond JM. The mechanism of solute transport by the gall-bladder. J Physiol. 1962;161(3):474–502. doi: 10.1113/jphysiol.1962.sp006899. (PMID: 10.1113/jphysiol.1962.sp006899)
Renfro JL. Interdependence of active Na+ and Cl- transport by the isolated urinary bladder of the teleost, pseudopleuronectes americanus. J Exp Zool. 1977;199(3):383–390. doi: 10.1002/jez.1401990311. (PMID: 10.1002/jez.1401990311)
Renfro JL, Miller DS, Karnaky KJ Jr, Kinter WB. Na-K-ATPase localization in teleost urinary bladder by [3H]ouabain autoradiography. Am J Physiol. 1976;231(6):1735–1743. doi: 10.1152/ajplegacy.1976.231.6.1735. (PMID: 10.1152/ajplegacy.1976.231.6.1735)
Renfro JL. Water and ion transport by the urinary bladder of the teleost Pseudopleuronectes americanus. Am J Physiol. 1975;228(1):52–61. doi: 10.1152/ajplegacy.1975.228.1.52. (PMID: 10.1152/ajplegacy.1975.228.1.52)
Stokes JB, Lee I, D'Amico M. Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system. J Clin Invest. 1984;74(1):7–16. doi: 10.1172/JCI111420. (PMID: 10.1172/JCI111420)
Kunau RT, Weller DR, Webb HL. Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest. 1975;56(2):401–407. doi: 10.1172/JCI108105. (PMID: 10.1172/JCI108105)
Costanzo LS, Windhager EE. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol. 1978;235(5):F492–F506. doi: 10.1152/ajprenal.1978.235.5.F492. (PMID: 10.1152/ajprenal.1978.235.5.F492)
Ellison DH, Velázquez H, Wright FS. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol Renal Physiol. 1987;253(3 Pt 2):F546–F554. doi: 10.1152/ajprenal.1987.253.3.F546. (PMID: 10.1152/ajprenal.1987.253.3.F546)
Gamba G. Arterial blood pressure, neuronal excitability, mineral metabolism and cell volume regulation mechanisms revealed by Xenopus laevis oocytes. Membranes (Basel). 2022;12(10):911. doi: 10.3390/membranes12100911. (PMID: 10.3390/membranes12100911)
Hediger MA, Coady M, Ikeda T, Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature. 1987;330(6146):379–381. doi: 10.1038/330379a0. (PMID: 10.1038/330379a0)
Gamba G, Saltzberg SN, Lombardi M, et al. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci USA. 1993;90(7):2749–2753. doi: 10.1073/pnas.90.7.2749. (PMID: 10.1073/pnas.90.7.2749)
Gamba G, Miyanoshita A, Lombardi M, et al. Molecular cloning, primary structure and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem. 1994;269(26):17713–17722. doi: 10.1016/s0021-9258(17)32499-7. (PMID: 10.1016/s0021-9258(17)32499-7)
Delpire E, Rauchman MI, Beier DR, Hebert SC, Gullans SR. Molecular cloning and chromosome localization of a putative basolateral Na + -K + -2Cl—cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem. 1994;269(41):25677–25683. doi: 10.1016/s0021-9258(18)47302-4. (PMID: 10.1016/s0021-9258(18)47302-4)
Xu JC, Lytle C, Zhu TT, Payne JA, Benz E Jr, Forbush B III. Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci USA. 1994;91(6):2201–2205. doi: 10.1073/pnas.91.6.2201. (PMID: 10.1073/pnas.91.6.2201)
Payne JA, Forbush B III. Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci USA. 1994;91(10):4544–4548. doi: 10.1073/pnas.91.10.4544. (PMID: 10.1073/pnas.91.10.4544)
Gillen CM, Brill S, Payne JA, Forbush B III. Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat and human. A new member of the cation-chloride cotransporter family. J Biol Chem. 1996;271(27):16237–16244. doi: 10.1074/jbc.271.27.16237. (PMID: 10.1074/jbc.271.27.16237)
Payne JA, Stevenson TJ, Donaldson LF. Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem. 1996;271(27):16245–16252. doi: 10.1074/jbc.271.27.16245. (PMID: 10.1074/jbc.271.27.16245)
Mount DB, Mercado A, Song L, et al. Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem. 1999;274(23):16355–16362. doi: 10.1074/jbc.274.23.16355. (PMID: 10.1074/jbc.274.23.16355)
Simon DB, Karet FE, Hamdan JM, Di Pietro A, Sanjad SA, Lifton RP. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–188. doi: 10.1038/ng0696-183. (PMID: 10.1038/ng0696-183)
Florea L, Caba L, Gorduza EV. Genetic heterogeneity in Bartter syndrome: clinical and practical importance. Front Pediatr. 2022;10:908655. doi: 10.3389/fped.2022.908655. (PMID: 10.3389/fped.2022.908655)
Simon DB, Karet FE, Rodriguez-Soriano J, et al. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K + channel, ROMK. Nat Genet. 1996;14(2):152–156. doi: 10.1038/ng1096-152. (PMID: 10.1038/ng1096-152)
Simon DB, Bindra RS, Mansfield TA, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet. 1997;17(2):171–178. doi: 10.1038/ng1097-171. (PMID: 10.1038/ng1097-171)
Birkenhäger R, Otto E, Schürmann MJ, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29(3):310–314. doi: 10.1038/ng752. (PMID: 10.1038/ng752)
Estévez R, Boettger T, Stein V, et al. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature. 2001;414(6863):558–561. doi: 10.1038/35107099. (PMID: 10.1038/35107099)
Waldegger S, Jeck N, Barth P, et al. Barttin increases surface expression and changes current properties of ClC-K channels. Pflugers Arch. 2002;444(3):411–418. doi: 10.1007/s00424-002-0819-8. (PMID: 10.1007/s00424-002-0819-8)
Laghmani K, Beck BB, Yang SS, et al. Polyhydramnios, transient antenatal Bartter's syndrome, and MAGED2 mutations. N Engl J Med. 2016;374(19):1853–1863. doi: 10.1056/NEJMoa1507629. (PMID: 10.1056/NEJMoa1507629)
Vargas-Poussou R, Huang C, Hulin P, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002;13(9):2259–2266. doi: 10.1097/01.ASN.0000025781.16723.68. (PMID: 10.1097/01.ASN.0000025781.16723.68)
Watanabe S, Fukumoto S, Chang H, et al. Association between activating mutations of calcium-sensing receptor and Bartter's syndrome. Lancet. 2002;360(9334):692–694. doi: 10.1016/S0140-6736(02)09842-2. (PMID: 10.1016/S0140-6736(02)09842-2)
Macnamara EF, Koehler AE, D'Souza P, Estwick T, Lee P, Vezina G. Kilquist syndrome: a novel syndromic hearing loss disorder caused by homozygous deletion of SLC12A2. Hum Mutat. 2019;40(5):532–538. doi: 10.1002/humu.23722. (PMID: 10.1002/humu.23722)
Delpire E, Wolfe L, Flores B, et al. A patient with multisystem dysfunction carries a truncation mutation in human SLC12A2, the gene encoding the Na-K-2Cl cotransporter, NKCC1. Cold Spring Harb Mol Case Stud. 2016;2(6):a001289. doi: 10.1101/mcs.a001289. (PMID: 10.1101/mcs.a001289)
Merner ND, Mercado A, Khanna AR, et al. Gain-of-function missense variant in SLC12A2, encoding the bumetanide-sensitive NKCC1 cotransporter, identified in human schizophrenia. J Psychiatr Res. 2016;77:22–26. doi: 10.1016/j.jpsychires.2016.02.016. (PMID: 10.1016/j.jpsychires.2016.02.016)
Schlingmann KP, de Baaij JHF. The genetic spectrum of Gitelman(-like) syndromes. Curr Opin Nephrol Hypertens. 2022;31(5):508–515. doi: 10.1097/MNH.0000000000000818. (PMID: 10.1097/MNH.0000000000000818)
Simon DB, Nelson-Williams C, Bia MJ, et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996;12(1):24–30. doi: 10.1038/ng0196-24. (PMID: 10.1038/ng0196-24)
Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA. 2009;106(14):5842–5847. doi: 10.1073/pnas.0901749106. (PMID: 10.1073/pnas.0901749106)
Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med. 2009;360(19):1960–1970. doi: 10.1056/NEJMoa0810276. (PMID: 10.1056/NEJMoa0810276)
Cuevas CA, Su XT, Wang MX, et al. Potassium sensing by renal distal tubules requires Kir4.1. J Am Soc Nephrol. 2017;28(6):1814–1825. doi: 10.1681/ASN.2016090935. (PMID: 10.1681/ASN.2016090935)
Song L, Mercado A, Vázquez N, et al. Molecular, functional, and genomic characterization of human KCC2, the neuronal K-Cl cotransporter. Brain Res Mol Brain Res. 2002;103(1–2):91–105. doi: 10.1016/s0169-328x(02)00190-0. (PMID: 10.1016/s0169-328x(02)00190-0)
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev. 2023;103(2):1095–1135. doi: 10.1152/physrev.00025.2021. (PMID: 10.1152/physrev.00025.2021)
Hübner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ. Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron. 2001;30(2):515–524. doi: 10.1016/s0896-6273(01)00297-5. (PMID: 10.1016/s0896-6273(01)00297-5)
Murillo-de-Ozores AR, Chávez-Canales M, de Los Heros P, Gamba G, Castañeda-Bueno M. Physiological processes modulated by the chloride-sensitive WNK-SPAK/OSR1 kinase signaling pathway and the cation-coupled chloride cotransporters. Front Physiol. 2020;11:585907. doi: 10.3389/fphys.2020.585907. (PMID: 10.3389/fphys.2020.585907)
Mercado A, Vázquez N, Song L, et al. NH2-terminal heterogeneity in the KCC3 K+-Cl- cotransporter. Am J Physiol Renal Physiol. 2005;289(6):F1246–F1261. doi: 10.1152/ajprenal.00464.2004. (PMID: 10.1152/ajprenal.00464.2004)
Kone BC, Brady HR, Gullans SR. Coordinated regulation of intracellular K+ in the proximal tubule: Ba2+ blockade down-regulates the Na+,K+-ATPase and up-regulates two K+ permeability pathways. Proc Natl Acad Sci USA. 1989;86(16):6431–6435. doi: 10.1073/pnas.86.16.6431. (PMID: 10.1073/pnas.86.16.6431)
Melo Z, Cruz-Rangel S, Bautista R, et al. Molecular evidence for K+:Cl- cotransporters role in the kidney. Am J Physiol Renal Physiol. 2013;305(10):F1402–F1411. doi: 10.1152/ajprenal.00390.2013. (PMID: 10.1152/ajprenal.00390.2013)
Ferdaus MZ, Terker AS, Koumangoye R, Delpire E. KCC3a, a strong candidate pathway for K(+) loss in alkalemia. Front Cell Dev Biol. 2022;10:931326. doi: 10.3389/fcell.2022.931326. (PMID: 10.3389/fcell.2022.931326)
Howard HC, Mount DB, Rochefort D, et al. The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet. 2002;32(3):384–392. doi: 10.1038/ng1002. (PMID: 10.1038/ng1002)
Boettger T, Hübner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the K-Cl co- transporter Kcc4. Nature. 2002;416(6883):874–878. doi: 10.1038/416874a. (PMID: 10.1038/416874a)
المشرفين على المادة: 0 (Cations)
0 (Chlorides)
0 (Diuretics)
9NEZ333N27 (Sodium)
451W47IQ8X (Sodium Chloride)
0 (Sodium-Potassium-Chloride Symporters)
0 (Solute Carrier Family 12, Member 3)
0 (Thiazides)
0 (SLC12A3 protein, human)
0 (SLC12A1 protein, human)
0 (Solute Carrier Family 12, Member 1)
تواريخ الأحداث: Date Created: 20231116 Date Completed: 20240214 Latest Revision: 20240807
رمز التحديث: 20240807
مُعرف محوري في PubMed: PMC10833596
DOI: 10.34067/KID.0000000000000307
PMID: 37968800
قاعدة البيانات: MEDLINE
الوصف
تدمد:2641-7650
DOI:10.34067/KID.0000000000000307