دورية أكاديمية

Differentiating the roles of proteins and polysomes in nucleoid size homeostasis in Escherichia coli.

التفاصيل البيبلوغرافية
العنوان: Differentiating the roles of proteins and polysomes in nucleoid size homeostasis in Escherichia coli.
المؤلفون: Chang MH; Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee., Lavrentovich MO; Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee; Department of Earth, Environment, and Physics, Worcester State University, Worcester, Massachusetts. Electronic address: mlavrent@utk.edu., Männik J; Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee. Electronic address: jmannik@utk.edu.
المصدر: Biophysical journal [Biophys J] 2024 Jun 04; Vol. 123 (11), pp. 1435-1448. Date of Electronic Publication: 2023 Nov 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Cell Press Country of Publication: United States NLM ID: 0370626 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1542-0086 (Electronic) Linking ISSN: 00063495 NLM ISO Abbreviation: Biophys J Subsets: MEDLINE
أسماء مطبوعة: Publication: Cambridge, MA : Cell Press
Original Publication: New York, Published by Rockefeller University Press [etc.] for the Biophysical Society.
مواضيع طبية MeSH: Escherichia coli*/metabolism , Escherichia coli*/cytology , Homeostasis* , Polyribosomes*/metabolism , Escherichia coli Proteins*/metabolism , Models, Biological*
مستخلص: A defining feature of the bacterial cytosolic interior is a distinct membrane-less organelle, the nucleoid, that contains the chromosomal DNA. Although increasing experimental evidence indicates that macromolecular crowding is the dominant mechanism for nucleoid formation, it has remained unclear which crowders control nucleoid volume. It is commonly assumed that polyribosomes play a dominant role, yet the volume fraction of soluble proteins in the cytosol is comparable with that of polyribosomes. Here, we develop a free energy-based model for the cytosolic interior of a bacterial cell to distinguish contributions arising from polyribosomes and cytosolic proteins in nucleoid volume control. The parameters of the model are determined from the existing experimental data. We show that, while the polysomes establish the existence of the nucleoid as a distinct phase, the proteins control the nucleoid volume in physiologically relevant conditions. Our model explains experimental findings in Escherichia coli that the nucleoid compaction curves in osmotic shock measurements do not depend on cell growth rate and that dissociation of polysomes in slow growth rates does not lead to significant nucleoid expansion, while the nucleoid phase disappears in fastest growth rates. Furthermore, the model predicts a cross-over in the exclusion of crowders by their linear dimensions from the nucleoid phase: below the cross-over of 30-50 nm, the concentration of crowders in the nucleoid phase decreases linearly as a function of the crowder diameter, while decreasing exponentially above the cross-over size. Our work points to the possibility that bacterial cells maintain nucleoid size and protein concentration homeostasis via feedback in which protein concentration controls nucleoid dimensions and the nucleoid dimensions control protein synthesis rate.
Competing Interests: Declaration of interests The authors declare no competing interests.
(Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.)
References: FEMS Microbiol Lett. 1995 Sep 15;131(3):235-42. (PMID: 7557335)
J Struct Biol. 2012 Jun;178(3):260-9. (PMID: 22503881)
Front Microbiol. 2021 Jan 21;11:624830. (PMID: 33552035)
Biophys Chem. 1998 Jul 13;73(1-2):23-9. (PMID: 9697298)
Biophys J. 2015 Feb 17;108(4):810-820. (PMID: 25692586)
Adv Appl Microbiol. 2013;83:69-86. (PMID: 23651594)
Biochim Biophys Acta Gen Subj. 2020 Dec;1864(12):129725. (PMID: 32891648)
Nat Rev Genet. 2020 Apr;21(4):227-242. (PMID: 31767998)
EcoSal Plus. 2008 Sep;3(1):. (PMID: 26443740)
Soft Matter. 2018 Sep 19;14(36):7368-7381. (PMID: 30204212)
FEBS Lett. 1996 Jul 29;390(3):245-8. (PMID: 8706869)
Chem Rev. 2013 Nov 13;113(11):8662-82. (PMID: 23941620)
Nat Rev Microbiol. 2017 May;15(5):309-318. (PMID: 28344349)
Curr Biol. 2019 Jul 8;29(13):2131-2144.e4. (PMID: 31155353)
Science. 2022 Dec 9;378(6624):eabk2066. (PMID: 36480614)
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33):. (PMID: 34385314)
J Biophys Biochem Cytol. 1958 Nov 25;4(6):671-8. (PMID: 13610928)
Cell. 2018 Feb 8;172(4):771-783.e18. (PMID: 29358050)
Cell. 2018 Mar 8;172(6):1271-1293. (PMID: 29522747)
Bioessays. 2013 Dec;35(12):1050-5. (PMID: 24114984)
Cell. 2021 Jul 8;184(14):3626-3642.e14. (PMID: 34186018)
Soft Matter. 2015 Mar 14;11(10):1877-88. (PMID: 25535704)
Biophys J. 2011 Jun 8;100(11):2605-13. (PMID: 21641305)
Biophys J. 2007 Apr 15;92(8):2875-84. (PMID: 17259281)
Adv Microb Physiol. 1983;24:301-66. (PMID: 6364728)
Front Microbiol. 2021 Jun 16;12:685687. (PMID: 34220773)
Biochimie. 2010 Dec;92(12):1715-21. (PMID: 20615449)
Nat Rev Genet. 2001 Apr;2(4):292-301. (PMID: 11283701)
J Appl Phys. 2021 Jun 7;129(21):210905. (PMID: 34103765)
Nucleic Acids Res. 2016 Feb 18;44(3):1216-26. (PMID: 26762981)
Mol Microbiol. 2012 Jul;85(1):21-38. (PMID: 22624875)
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):799-804. (PMID: 22203973)
J Phys Chem B. 2017 Jul 6;121(26):6351-6358. (PMID: 28599107)
J Struct Biol. 2001 Oct;136(1):53-66. (PMID: 11858707)
Soft Matter. 2016 Nov 28;12(47):9436-9450. (PMID: 27834427)
Nat Rev Genet. 2013 Mar;14(3):191-203. (PMID: 23400100)
Biochimie. 2013 Apr;95(4):643-58. (PMID: 23228516)
J Mol Biol. 1990 Jun 20;213(4):931-51. (PMID: 2359128)
Nat Microbiol. 2016 Dec 12;2:16231. (PMID: 27941827)
Cell. 2019 May 30;177(6):1632-1648.e20. (PMID: 31150626)
Mol Microbiol. 2014 Nov;94(4):871-87. (PMID: 25250841)
Front Microbiol. 2015 Jul 02;6:636. (PMID: 26191045)
J Bacteriol. 1973 Dec;116(3):1364-74. (PMID: 4584813)
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11413-8. (PMID: 25056965)
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2649-56. (PMID: 22984156)
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43):. (PMID: 34675077)
Cold Spring Harb Symp Quant Biol. 1974;38:31-41. (PMID: 4598638)
Biophys J. 2020 May 5;118(9):2141-2150. (PMID: 31629479)
Mol Microbiol. 2020 May;113(5):1022-1037. (PMID: 31961016)
معلومات مُعتمدة: R01 GM127413 United States GM NIGMS NIH HHS
المشرفين على المادة: 0 (Escherichia coli Proteins)
تواريخ الأحداث: Date Created: 20231117 Date Completed: 20240605 Latest Revision: 20240612
رمز التحديث: 20240612
مُعرف محوري في PubMed: PMC11163298
DOI: 10.1016/j.bpj.2023.11.010
PMID: 37974398
قاعدة البيانات: MEDLINE