دورية أكاديمية

Agricultural abandoned lands as emission sources of dust containing metals and pesticides in the Sonora-Arizona Desert.

التفاصيل البيبلوغرافية
العنوان: Agricultural abandoned lands as emission sources of dust containing metals and pesticides in the Sonora-Arizona Desert.
المؤلفون: Bracamonte-Terán JA; Programa de Doctorado en Ciencias, Centro de Investigación en Alimentación y Desarrollo A.C. Carretera Gustavo E. Astiazarán Rosas 46, La Victoria, 83304, Hermosillo, Mexico., Meza-Figueroa D; División de Ciencias Exactas y Naturales, Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Mexico. diana.meza@unison.mx., García-Rico L; Centro de Investigación en Alimentación y Desarrollo A.C. Carretera Gustavo E. Astiazarán Rosas 46, La Victoria, 83304, Hermosillo, Mexico. lgarciar@ciad.mx., Schiavo B; Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico., Meza-Montenegro MM; Departamento de Recursos Naturales, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Cd. Obregón, Mexico., Valenzuela-Quintanar AI; Centro de Investigación en Alimentación y Desarrollo A.C. Carretera Gustavo E. Astiazarán Rosas 46, La Victoria, 83304, Hermosillo, Mexico.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2023 Nov 20; Vol. 195 (12), pp. 1496. Date of Electronic Publication: 2023 Nov 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Pesticides* , Arsenic*, Humans ; Copper ; Manganese ; Titanium ; Arizona ; Environmental Monitoring ; Agriculture ; Metals ; Zinc ; Iron ; Dust
مستخلص: This investigation examines the transport of metal- and pesticide-polluted dust emitted by one of the most relevant agricultural areas of Northwestern Mexico. In the contaminated area, an excessive water extraction of the aquifer and seawater intrusion caused the abandonment of fields, which are pollutant-loaded dust emitters. We used air mass forward trajectories (HYSPLIT) model to obtain particle trajectories in the wind and the use of banned pesticides as geochemical tracers for dust transported by wind. Fifty dust samples from 10 agriculture fields and 26 roof dust of a city close to the agricultural area were analyzed for their contents of zirconium, lead, arsenic, zinc, copper, iron, manganese, vanadium, and titanium, by portable X-ray fluorescence. Nine pesticides were analyzed in the roof dust and agricultural soil samples by gas chromatography. Results show that the distribution of metals was significantly different between active and abandoned fields. Arsenic-lead-copper was mainly concentrated in abandoned fields, while zinc-iron-manganese-titanium was dominant in active fields. Two potential sources of metal contamination were found by principal component analysis (PCA): (I) a mixture of traffic and agricultural sources and (II) a group related to agricultural activities. The occurrence of banned pesticides in dust deposited on roofs collected at nearby cities confirms the atmospheric transport from the agricultural area. The HYSPLIT results indicated that the dust emitted from agricultural fields can reach up to the neighboring states of Sonora, Mexico, and the USA. The impacts that these emissions can have on human health should be studied in future research.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 1–34. https://doi.org/10.3390/toxics9030042. (PMID: 10.3390/toxics9030042)
Attiya, A. A., & Jones, B. G. (2020). Assessment of mineralogical and chemical properties of airborne dust in Iraq. SN Applied Sciences, 2(9), 1–21. https://doi.org/10.1007/s42452-020-03326-5. (PMID: 10.1007/s42452-020-03326-5)
Avendaño, M. C., Palomeque, M. E., Roqué, P., Lojo, A., & Garrido, M. (2021). Spatiotemporal distribution and human health risk assessment of potential toxic species in soils of urban and surrounding crop fields from an agricultural area, Córdoba, Argentina. Environmental Monitoring and Assessment, 193(10), 1-19. https://doi.org/10.1007/s10661-021-09358-7. (PMID: 10.1007/s10661-021-09358-7)
Baltas, H., Sirin, M., Gökbayrak, E., & Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere, 241, 125015. https://doi.org/10.1016/j.chemosphere.2019.125015. (PMID: 10.1016/j.chemosphere.2019.125015)
Bhuiyan, M. A., Karmaker, S. C., Bodrud-Doza, M., Rakib, M. A., & Saha, B. B. (2021). Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of Dhaka District employing SOM, PMF and GIS. Chemosphere, 263, 128339. https://doi.org/10.1016/j.chemosphere.2020.128339. (PMID: 10.1016/j.chemosphere.2020.128339)
Candeias, C., Freire-Ávila, P., Alves, C., Gama, C., Sequeira, C., Ferreira da Silva, E., & Rocha, F. (2021). Dust characterization and its potential impact during the 2014–2015 Fogo Volcano Eruption (Cape Verde). Minerals, 11, 1275. https://doi.org/10.3390/min11111275. (PMID: 10.3390/min11111275)
Chalise, D., Kumar, L., & Kristiansen, P. (2019). Land degradation by soil erosion in Nepal: A review. Soil Systems, 3(1), 1–18. https://doi.org/10.3390/soilsystems3010012. (PMID: 10.3390/soilsystems3010012)
Chen, W., Zeng, F., Liu, W., Bu, J., Hu, G., Xie, S., & Huang, H. (2021). Organochlorine pesticides in karst soil: Levels, distribution, and source diagnosis. International Journal of Environmental Research and Public Health, 18(21), 11589. https://doi.org/10.3390/ijerph182111589. (PMID: 10.3390/ijerph182111589)
Defarge, N., Spiroux de Vendômois, J., & Séralini, G. E. (2018). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports, 5, 156–163. https://doi.org/10.1016/j.toxrep.2017.12.025. (PMID: 10.1016/j.toxrep.2017.12.025)
Del Río-Salas, R., Ruiz, J., De la O-Villanueva, M., Valencia-Moreno, M., Moreno-Rodríguez, V., Gómez-Alvarez, A., Grijalva, T., Mendivil, H., Paz-Moreno, F., & Meza-Figueroa, D. (2012). Tracing geogenic and anthropogenic sources in urban dusts: Insights from lead isotopes. Atmospheric Environment, 60, 202–210. https://doi.org/10.1016/j.atmosenv.2012.06.061. (PMID: 10.1016/j.atmosenv.2012.06.061)
Fei, X., Lou, Z. L., Xiao, R., Ren, Z., & Lv, X. (2022). Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils in different cultivated land qualities. Journal of Cleaner Production, 341, 130942. https://doi.org/10.1016/j.jclepro.2022.130942. (PMID: 10.1016/j.jclepro.2022.130942)
Fry, K. L., Gillings, M. M., Isley, C. F., Gunkel-Grillon, P., & Taylor, M. P. (2021). Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk. Environmental Pollution, 288, 117593. https://doi.org/10.1016/j.envpol.2021.117593. (PMID: 10.1016/j.envpol.2021.117593)
Gallego-Hernández, A. L., Meza-Figueroa, D., Tanori, J., Acosta-Elias, M., Gonzalez-Grijalva, B., Maldonado-Escalante, F., Rochin-Wong, S., Soto-Puebla, D., Navarro-Espinoza, S., Ochoa-Contreras, R., & Pedroza-Montero, M. (2020). Identification of inhalable rutile and polycyclic aromatic hydrocarbons (PAHs) nanoparticles in the atmospheric dust. Environmental Pollution, 260, 114006. https://doi.org/10.1016/j.envpol.2020.1144006. (PMID: 10.1016/j.envpol.2020.1144006)
González-Guzmán, R., Inguaggiato, C., Brusca, L., González-Acevedo, Z. I., & Bernard-Romero, R. (2022). Assessment of potentially toxic elements (PTEs) sources on soils surrounding a fossil fuel power plant in a semi-arid/arid environment: A case study from the Sonoran Desert. Applied Geochemistry, 136, 105158. https://doi.org/10.1016/j.apgeochem.2021.105158. (PMID: 10.1016/j.apgeochem.2021.105158)
Huang, S. W., & Jin, J. Y. (2008). Status of heavy metals in agricultural soils as affected by different patterns of land use. Environmental Monitoring and Assessment, 139, 317–327. https://doi.org/10.1007/s10661-007-9838-4. (PMID: 10.1007/s10661-007-9838-4)
IPCC. (2019). Intergovernmental Panel on Climate Change. Summary for policymakers. In P. R. Shukla, J. Skea, E. Calvo Buendía, V. Masson-Delmotte, H. O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, & R. van Diemen (Eds.), Climate change and land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. United Nations, IPCC ISBN 978-92-9169-154-8. https://www.ipcc.ch/srccl/.
Jooybari, S. A., Peyrowan, H., Rezaee, P., & Gholami, H. (2022). Evaluation of pollution indices, health hazards and source identification of heavy metal in dust particles and storm trajectory simulation using HYSPLIT model (case study: Hendijan center dust, southwest of Iran). Environmental Monitoring and Assessment, 194, 107. https://doi.org/10.1007/s10661-022-09760-9. (PMID: 10.1007/s10661-022-09760-9)
Joshi, J. R. (2021). Quantifying the impact of cropland wind erosion on air quality: A high-resolution modeling case study of an Arizona dust storm. Atmospheric Environment, 263, 118658. https://doi.org/10.1016/j.atmosenv.2021.118658. (PMID: 10.1016/j.atmosenv.2021.118658)
Katra, I. (2020). Soil erosion by wind and dust emission in semi-arid soils due to agricultural activities. Agronomy, 10(1), 89. https://doi.org/10.3390/agronomy10010089. (PMID: 10.3390/agronomy10010089)
Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007. (PMID: 10.1016/j.geoderma.2014.01.007)
Leal, S. D., Valenzuela, A. I., Gutiérrez, M. L., Bermúdez, M. C., García, J., Aldana, M. L., & Palma, S. A. (2014). Residuos de plaguicidas organoclorados en suelos agrícolas. Terra Latinoamericana, 32(1), 111 https://www.terralatinoamericana.org.mx/index.php/terra/article/view/14/12.
Lee, P. K., Kang, M. J., Yu, S., & Kwon, Y. K. (2020). Assessment of trace metal pollution in roof dusts and soils near a large Zn smelter. Science of the Total Environment, 713, 136536. https://doi.org/10.1016/j.scitotenv.2020.136536. (PMID: 10.1016/j.scitotenv.2020.136536)
Luo, H., Guan, Q., Pan, N., Wang, Q., Li, H., Lin, J., Tan, Z., & Shao, W. (2020). Using composite fingerprints to quantify the potential dust source contributions in northwest China. Science of the Total Environment, 742, 140560. https://doi.org/10.1016/j.scitotenv.2020.140560. (PMID: 10.1016/j.scitotenv.2020.140560)
Meza-Figueroa, D., Barboza-Flores, M., Romero, F. M., Acosta-Elias, M., Hernandez-Mendiola, E., Maldonado-Escalante, F., Perez-Segura, E., Gonzalez-Grijalva, B., Meza-Montenegro, M. M., Garcia-Rico, L., Navarro-Espinoza, S., Santacruz-Gómez, K., Gallego-Hernández, A., & Pedroza-Montero, M. (2020). Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. Science of the Total Environment, 713, 136481. https://doi.org/10.1016/j.scitotenv.2019.136481. (PMID: 10.1016/j.scitotenv.2019.136481)
Meza-Figueroa, D., González-Grijalva, B., Del Río-Salas, R., Coimbra, R., Ochoa-Landin, L., & Moreno-Rodríguez, V. (2016). Traffic signatures in suspended dust at pedestrian levels in semiarid zones: Implications for human exposure. Atmospheric Environment, 138, 4–14. https://doi.org/10.1016/j.atmosenv.2016.05.005. (PMID: 10.1016/j.atmosenv.2016.05.005)
Meza-Montenegro, M. M., Gandolfi, A. J., Santana-Alcántar, M. E., Klimecki, T. W., Aguilar-Apodaca, M. G., Del Río-Salas, R., & De la O-Villanueva, M., Gómez-Alvarez, A., Mendivil-Quijada, H., & Meza-Figueroa, D. (2012). Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Science of the Total Environment, 433, 472–481. https://doi.org/10.1016/j.scitotenv.2012.06.083. (PMID: 10.1016/j.scitotenv.2012.06.083)
Meza-Montenegro, M. M., Valenzuela-Quintanar, A. I., Balderas-Cortés, J. J., Yañez-Estrada, L., Gutiérrez-Coronado, M. L., Cuevas-Robles, A., & Gandolfi, A. J. (2013). Exposure assessment of organochlorine pesticides, arsenic, and lead in children from the major agricultural areas in Sonora, Mexico. Archives of Environmental Contamination and Toxicology, 64(3), 519–527. https://doi.org/10.1007/s00244-012-9846-4. (PMID: 10.1007/s00244-012-9846-4)
Miglioranza, K. S. B., Ondarza, P. M., Costa, P. G., de Azevedo, A., Gonzalez, M., Shimabukuro, V. M., Grondona, S. I., Mitton, F. M., Barra, R. O., Wania, F., & Fillmann, G. (2021). Spatial and temporal distribution of persistent organic pollutants and current use pesticides in the atmosphere of Argentinean Patagonia. Chemosphere, 266, 129015. https://doi.org/10.1016/j.chemosphere.2020.129015. (PMID: 10.1016/j.chemosphere.2020.129015)
Moreno-Rodríguez, V., Del Rio-Salas, R., Loredo-Portales, R., Briseño-Beltrán, A., Romo-Morales, D., Zepeda, J., Peña-Ortega, M., Espinoza-Maldonado, I. G., & De la O-Villanueva, M. (2020). Abandoned agricultural lands as a source of arsenic in semi-arid regions: Influence on human exposure and health risk assessment in vulnerable rural areas. Journal of South American Earth Sciences, 104, 102829. https://doi.org/10.1016/j.jsames.2020.102829. (PMID: 10.1016/j.jsames.2020.102829)
Moreno-Rodríguez, V., Del Río-Salas, V., Adams, D. K., Ochoa-Landin, L., Zepeda, J., Gómez-Alvarez, A., Palafox-Reyes, J., & Meza-Figueroa, D. (2015). Historical trends and sources of TSP in a Sonoran desert city: Can the North America Monsoon enhance dust emissions? Atmospheric Environment, 110, 111–121. https://doi.org/10.1016/j.atmosenv.2015.03.049. (PMID: 10.1016/j.atmosenv.2015.03.049)
NMX-AA-132-SCFI-2016. (2016). Norma Mexicana. Soil sampling for metals and metalloids identification and quantification, and sample handling. Secretaría de Economía-Diario Oficial de la Federación, México city. http://www.economia-nmx.gob.mx/normas/nmx/2010/nmx-aa-132-scfi-2016.pdf.
Ochoa-Noriega, C., Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., & López-Felices, B. (2022). Analysis of the acceptance of sustainable practice in water management for the intensive agriculture of the Costa de Hermosillo (Mexico). Agronomy, 12, 154. https://doi.org/10.3390/agronomy12010154. (PMID: 10.3390/agronomy12010154)
Péterfalvi, N., Keller, B., & Magyar, M. (2018). PM10 emission from crop production and agricultural soils. Agrokémia és Talajtan, 67(1), 143–159. https://doi.org/10.1556/0088.2018.67.1.10. (PMID: 10.1556/0088.2018.67.1.10)
Pi, H., Webb, N. P., Lei, J., & Li, S. (2022). Soil loss and PM10 emissions from agricultural fields in the Junggar basin over the past six decades. Journal of Soil and Water Conservation, 77(2), 113–125. https://doi.org/10.2489/jswc.2022.00018. (PMID: 10.2489/jswc.2022.00018)
Pozzer, A., Tsimpidi, A. P., Karydis, V. A., de Meij, A., & Lelieveld, J. (2017). Impact of agricultural emission reductions on fine particulate matter and public health. Atmospheric Chemistry and Physics, 17(20), 12813–12826. https://doi.org/10.5194/acp-17-12813-2017. (PMID: 10.5194/acp-17-12813-2017)
Qishlaqui, A., & Moore, F. (2007). Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River banks, Shiraz, Iran. American-Eurasian. Journal of Agriculture and Environmental Sciences, 2(5), 565–573 http://www.idosi.org/aejaes/jaes2(5)/17.pdf.
Rahman, M. S., Kumar, P., Ullah, M., Jolly, Y. N., Akhter, S., Kabir, J., Begum, B. A., & Salam, A. (2021). Elemental analysis in surface soil and dust of roadside academic institutions in Dhaka City, Bangladesh and their impact on human health. Environmental Chemistry and Ecotoxicology, 3, 197–208. https://doi.org/10.1016/j.enceco.2021.06.001. (PMID: 10.1016/j.enceco.2021.06.001)
Ramirez, H. N. B., Aparicio, V. C., & Mendez, M. J. (2021). First evidence of glyphosate and aminomethylphosphonic acid (AMPA) in the respirable dust (PM10) emitted from unpaved rural roads of Argentina. Science of the Total Environment, 773, 145055. https://doi.org/10.1016/j.scitotenv.2021.145055. (PMID: 10.1016/j.scitotenv.2021.145055)
Salazar-Adams, A., Moreno-Vázquez, J. L., & Lutz-Ley, A. N. (2012). Agricultura y manejo sustentable del acuífero de la Costa de Hermosillo. Región y Sociedad, 3, 155–179. https://doi.org/10.22198/rys.2012.3.a411. (PMID: 10.22198/rys.2012.3.a411)
SIAP. (2021). Servicio de Información Agroalimentaria y Pesca. Anuario Estadístico de la Producción Agrícola: Producción Agrícola 2010-2020. Secretaría de Agricultura y Desarrollo Rural. México. https://www.google.com/url?q=https://nube.siap.gob.mx/cierreagricola/&source=gmail-imap&ust=1664568198000000&usg=AOvVaw00TpReb1JMoLJc12YwTkdK.
Singh, T., Ravindra, K., Beig, G., & Mor, S. (2021). Influence of agricultural activities on atmospheric pollution during post-monsoon harvesting seasons at a rural location of Indo-Gangetic Plain. Science of the Total Environment, 796, 148903. https://doi.org/10.1016/j.scitotenv.2021.148903. (PMID: 10.1016/j.scitotenv.2021.148903)
Spada, N. J., McNally, A. M., Gill, T. E., Best, H. Q., Wells, A. M., & Longcore, T. (2023). Fugitive gypsum dust deposition on a neighboring wildlife refuge, Antioch Dunes, California, USA. Journal of the Air & Waste Management Association. https://doi.org/10.1080/10962247.2023.2254267.
Sprigg, W. A., Nickovic, S., Galgiani, J. V., Pejanovic, G., Petkovic, S., Vujadinovic, M., Vukovic, A., Dacic, M., Di Biase, S., Prasad, A., & El-Askary, H. (2014). Regional dust storm modeling for health services: The case of valley Fever. Aeolian Research, 14, 53–73. https://doi.org/10.1016/j.aeolia.2014.03.001. (PMID: 10.1016/j.aeolia.2014.03.001)
Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8), 1273. https://doi.org/10.1016/0016-7037(64)90129-2. (PMID: 10.1016/0016-7037(64)90129-2)
Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309. https://doi.org/10.1016/j.envint.2015.12.017. (PMID: 10.1016/j.envint.2015.12.017)
Tzanetou, E. N., & Karasali, H. (2022). A comprehensive review of organochlorine pesticide monitoring in agricultural soils: The silent threat of a conventional agricultural past. Agriculture, 12(5), 728. https://doi.org/10.3390/agriculture12050728. (PMID: 10.3390/agriculture12050728)
USEPA. (2007). United States Environmental Protection Agency. Method 6200. Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. Washinton, DC, USA. Environmental Protection Agency. https://www.epa.gov/sites/default/files/2015-12/documents/6200.pdf.
Vimic, A. V., Cvetkovic, B., Giannaros, T. M., Shahbazi, R., Kashani, S. S., Prieto, J., Kotroni, V., Lagouvardos, K., Pejanovic, G., Petkovic, S., Nickovic, S., Mandic, M. V., Basart, S., Boloorani, A. D., & Terradellas, E. (2021). Numerical simulation of Tehran dust storm on 2 June 2014: A case study of agricultural abandoned lands as emission sources. Atmosphere, 12(8), 1054. https://doi.org/10.3390/atmos12081054. (PMID: 10.3390/atmos12081054)
Wagari, M., & Tamiru, H. (2021). RUSLE model based annual soil loss quantification for soil erosion protection: A case of Fincha Catchment, Ethiopia. Air, Soil and Water Research, 14, 1–12. https://doi.org/10.1177/11786221211046234. (PMID: 10.1177/11786221211046234)
Wang, J., Xie, X., & Fang, C. (2019). Temporal and spatial distribution characteristics of atmospheric particulate matter (PM10 and PM2.5) in Changchun and analysis of its influencing factors. Atmosphere, 10(11), 651. https://doi.org/10.3390/atmos10110651. (PMID: 10.3390/atmos10110651)
Wang, Y., Guo, G., Zhang, D., & Lei, M. (2021). An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis. Environmental Pollution, 276, 116666. https://doi.org/10.1016/j.envpol.2021.116666. (PMID: 10.1016/j.envpol.2021.116666)
Zeb, B., Alam, K., Ditta, A., Ullah, S., Ali, H., Ibrahim, M., & Salem, M. Z. M. (2022). Variation in coarse particulate matter (PM10) and its characterization at multiple locations in the semiarid region. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.843582.
Zepeda, Q. D. S., Loeza, R. C. M., Munguía, V. N. E., Esquer, P. J., & Velazquez, C. L. E. (2018). Sustainability strategies for coastal aquifers: A case study of the Hermosillo Coast aquifer. Journal of Cleaner Production, 195, 1170–1182. https://doi.org/10.1016/j.jclepro.2018.05.191. (PMID: 10.1016/j.jclepro.2018.05.191)
Zhang, B., Jiao, L., Xu, G., Zhao, S., Tang, X., Zhou, Y., & Gong, C. (2018). Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10). Meteorology and Atmospheric Physics, 130(3), 383–392. https://doi.org/10.1007/s00703-017-0526-9. (PMID: 10.1007/s00703-017-0526-9)
فهرسة مساهمة: Keywords: Agricultural soils; Arid zones; Dust transport; HYSPLIT; Metals
المشرفين على المادة: 0 (Pesticides)
789U1901C5 (Copper)
42Z2K6ZL8P (Manganese)
D1JT611TNE (Titanium)
N712M78A8G (Arsenic)
0 (Metals)
J41CSQ7QDS (Zinc)
E1UOL152H7 (Iron)
0 (Dust)
تواريخ الأحداث: Date Created: 20231120 Date Completed: 20231121 Latest Revision: 20231225
رمز التحديث: 20231227
DOI: 10.1007/s10661-023-12086-9
PMID: 37982889
قاعدة البيانات: MEDLINE