دورية أكاديمية

The dyeing effect of acridine orange for multiple plasmid systems is sensitive to temperature.

التفاصيل البيبلوغرافية
العنوان: The dyeing effect of acridine orange for multiple plasmid systems is sensitive to temperature.
المؤلفون: Jiao Q; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China., Zhang Y; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China., Xie J; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China., Liu F; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China., Peng C; Department of General Practice, The First Affiliated Hospital, Chengdu Medical College, Chengdu, China., Pan Q; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China.
المصدر: Journal of cellular biochemistry [J Cell Biochem] 2024 Feb; Vol. 125 (2), pp. e30499. Date of Electronic Publication: 2023 Nov 27.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8205768 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4644 (Electronic) Linking ISSN: 07302312 NLM ISO Abbreviation: J Cell Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004>- : Hoboken, NJ : Wiley-Liss
Original Publication: New York : Liss, c1982-
مواضيع طبية MeSH: Acridine Orange*/chemistry , Coloring Agents* , Acetates* , Ethylenediamines*, Temperature ; Plasmids/genetics ; Edetic Acid
مستخلص: The Goldview dyeing of the natural multiplasmid system of Lactobacillus plantarum PC518 was affected by temperature. The article want to identify the specific molecules that cause temperature sensitivity, then experiment on the universality of temperature sensitivity, and finally preliminarily analyze the influencing factors. At 5°C and 25°C, single pDNA, multiplasmid system, and linear DNA samples were electrophoretic on agarose gel prestained by Goldview 1, 2, 3, and acridine orange (AO), respectively. Eighteen vectors of Escherichia coli and two vectors shortened by cloning were mixed into multiplasmid systems with different member numbers, and then electrophoresis with AO staining was performed within the range of 5°C-45°C, with a linearized multiplasmid system as the control. The lane profiles (peaks) were captured with Image Lab 5.1 software. After electrophoresis, the nine-plasmid-2 system was dyed with AO solutions of different ionic strengths to detect the effect of ionic strength on temperature sensitivity. It was measured that the UV-visible absorption spectra of the nine-plasmid-2 system dissolved in AO solutions with different ionic strengths and pH. Further, a response surface model was constructed using Design-Expert.V8.0.6 software. The electrophoresis result showed that the multiplasmid system from L. plantarum PC518 stained by AO staining showed a weak band at 5°C and five bands at 25°C, which was similar to the result of staining with Goldview 1, 2, and 3. The synthetic nine-plasmid-1 system and nine-plasmid-2 system displayed different band numbers on the electrophoresis gel in the electrophoresis temperature range of 5°C-45°C, namely 3, 4, 6, 4, and 2 bands, as well as 2, 6, 7, 8, and 5 bands. Using the 1× Tris-acetate-EDTA (TAE)-AO solution, the poststaining results of the nine-plasmid-2 system in the temperature range of 5°C-45°C were 4, 6, 9, 9, and 7 bands, respectively. Further, using 5×, 10×, or 25× TAE buffer, the AO poststaining results at 5°C were 4, 2, and 1 bands, respectively. The ultraviolet spectral results from 5°C to 25°C showed that there was a significant difference (3.5 times) in the fluctuation amplitude at the absorption peak of 261.2 nm between 0× and 1-10× TAE-AO solution containing the nine-plasmid-2 system. Specifically, the fluctuation amplitudes of 0×, 1×, 5×, and 10× samples were 0.032, 0.109, 0.112, and 0.110, respectively. At the same time, using 1× and 10× TAE buffer, the AO-stained linear nine-plasmid-2 system remained stable and did not display temperature sensitivity. The response surface models of the AO-stained nine-plasmid-2 system intuitively displayed that the absorbance of the 1× TAE samples increased significantly with increasing temperature compared to the 0× TAE samples, regardless of the pH value. The findings confirmed a temperature-dependent effect in AO staining of natural or synthetic multiplasmid systems, with the optimum staining result occurring at 25°C. Ion strength was a necessary condition for the temperature sensitivity mechanism. This study layed the groundwork for further investigation into the reasons or underlying mechanisms of temperature sensitivity in AO staining of multiplasmid systems.
(© 2023 Wiley Periodicals LLC.)
References: Sun DQ, Hongfei LI, Song DW, Yang J, Zhang DJ, Xiaoxi XU. Research progress of natural plasmids in Lactobacillus. Food Science. 2015;36(11):251-255.
Burian J, Guller L, Mačor M, Kay WW. Small cryptic plasmids of multiplasmid, clinical Escherichia coli. Plasmid. 1997;37(1):2-14. doi:10.1006/plas.1996.1273.
Ma X, Li J, Xiong Y, Zhai Z, Ren F, Hao Y. Characterization of a rolling-circle replication plasmid pM411 from Lactobacillus plantarum 1-3. Curr Microbiol. 2016;73(6):820-826. doi:10.1007/s00284-016-1124-7.
Ruiz-Barba JL, Piard JC, Jiménez-Díaz R. Plasmid profiles and curing of plasmids in Lactobacillus plantarum strains isolated from green olive fermentations. J Appl Bacteriol. 1991;71(5):417-421.
Hertweck C. The multiplasmid approach: a new perspective for combinatorial biosynthesis. ChemBioChem. 2000;1(2):103-106. doi:10.1002/1439-7633(20000818)1:2<103::AID-CBIC103>3.0.CO;2-K.
Catanzaro AT, Roederer M, Koup RA, et al. Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine. 2007;25(20):4085-4092. doi:10.1016/j.vaccine.2007.02.050.
Graham BS, Koup RA, Roederer M, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis. 2006;194(12):1650-1660. doi:10.1086/509259.
Muthumani K, Kudchodkar S, Zhang D, et al. Issues for improving multiplasmid DNA vaccines for HIV-1. Vaccine. 2002;20(15):1999-2003. doi:10.1016/s0264-410x(02)00086-5.
Jiao Q, Xin Z, Gou Q, Cao K, Pan Q. Multiplasmid DNA in agarose gel electrophoresis: suitable dye and temperature is essential for prominent profiles. Electrophoresis. 2022;43(3):472-476. doi:10.1002/elps.202100206.
Byvaltsev VA, Bardonova LA, Onaka NR, et al. Acridine orange: a review of novel applications for surgical cancer imaging and herapy. Front Oncol. 2019;9:925-932. doi:10.3389/fonc.2019.00925.
Sayed M, Krishnamurthy B, Pal H. Unraveling the salt induced modulation in the photophysical behavior of acridine orange dye on its interaction with natural DNA. J Mol Liq. 2021;336(69):116146-116158. doi:10.1016/j.molliq.2021.116146.
Sağlam H, Karahan AG. Plasmid stability of potential probiotic Lactobacillus plantarum strains in artificial gastric juice, at elevated temperature, and in the presence of novobiocin and acriflavine. Arch Microbiol. 2021;203(1):183-191. doi:10.1007/s00203-020-02017-4.
Bag S, Hasan MI, Halder D, Ghosh A. Biosorption of organic dye acridine orange from aqueous solution using dry biomass of Bacillus cereus M116. Arch Microbiol. 2021;203(7):3811-3823. doi:10.1007/s00203-021-02355-x.
Pan Q, Zhang L, Li J, et al. Characterization of pLP18, a novel cryptic plasmid of Lactobacillus plantarum PC518 isolated from Chinese pickle. Plasmid. 2011;65(3):204-209. doi:10.1016/j.plasmid.2011.01.001.
Yao F, Xu XY, Pan Q. A modified method for plasmid extraction from Lactobacillus plantarum contained lysozyme removal step. Anal Biochem. 2019;566:37-39. doi:10.1016/j.ab.2018.11.005.
Nafisi S, Saboury AA, Keramat N, Neault JF, Tajmir-Riahi HA. Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J Mol Struct. 2007;827(1-3):35-43. doi:10.1016/j.molstruc.2006.05.004.
Mou J, Yang J, Shao Z. Tris(hydroxymethyl)aminomethane (C4H11NO3) induced a ripple phase in supported unilamellar phospholipid bilayers. Biochemistry. 1994;33(15):4439-4443. doi:10.1021/bi00181a001.
Pielak GJ. Buffers, especially the good kind. Biochemistry. 2021;60(46):3436-3440. doi:10.1021/acs.biochem.1c00200.
Amado AM, Pazin WM, Ito AS, Vladimir, Kuzmin VA, Borissevitch IE. Acridine orange interaction with DNA: effect of ionic strength. Biochimica et Biophysica Acta (BBA) - General Subjects. 2017;1861:900-909. doi:10.1016/j.bbagen.2017.01.023.
Delic J, Coppey J, Magdelenat H, Coppey-Moisan M. Impossibility of acridine orange intercalation in nuclear DNA of the living cell. Exp Cell Res. 1991;194(1):147-153. doi:10.1016/0014-4827(91)90144-j.
Wang JC, Baumgarten D, Olivera BM. On the origin of tertiary turns in covalently closed double-stranded cyclic DNA. Proc Natl Acad Sci USA. 1967;58(5):1852-1858. doi:10.1073/pnas.58.5.1852.
Depew DE, Wang JC. Conformational fluctuations of DNA helix. Proc Natl Acad Sci. 1975;72(11):4275-4279. doi:10.1073/pnas.72.11.4275.
Wang JC. Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic λ DNA. J Mol Biol. 1969;43(1):25-39. doi:10.1016/0022-2836(69)90076-x.
Fan YT, Li XY, Liu YH, Chen H. Effect of temperature on topological states of circular DNA. Commun Theor Phys. 2017;68(07):131-136. doi:10.1088/0253-6102/68/1/131.
Krolenko S, Adamyan S, Belyaeva T, Mozhenok T. Acridine orange accumulation in acid organelles of normal and vacuolated frog skeletal muscle fibres. Cell Biol Int. 2006;30(11):933-939. doi:10.1016/j.cellbi.2006.06.017.
Sayed M, Krishnamurthy B, Pal H. Unraveling multiple binding modes of acridine orange to DNA using a multispectroscopic approach. Phys Chem Chem Phys. 2016;18(35):24642-24653. doi:10.1039/c6cp03716j.
معلومات مُعتمدة: 21PJ112 Sichuan Provincial Health Commission Foundation
فهرسة مساهمة: Keywords: acridine orange; gel electrophoresis; multiple pasmid systems; temperature sensitivity; ultraviolet spectroscopy
المشرفين على المادة: F30N4O6XVV (Acridine Orange)
0 (tris-acetate-EDTA buffer)
0 (Coloring Agents)
9G34HU7RV0 (Edetic Acid)
0 (Acetates)
0 (Ethylenediamines)
تواريخ الأحداث: Date Created: 20231127 Date Completed: 20240214 Latest Revision: 20240214
رمز التحديث: 20240214
DOI: 10.1002/jcb.30499
PMID: 38009594
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4644
DOI:10.1002/jcb.30499