دورية أكاديمية

Odorant receptor orthologues from moths display conserved responses to cis-jasmone.

التفاصيل البيبلوغرافية
العنوان: Odorant receptor orthologues from moths display conserved responses to cis-jasmone.
المؤلفون: Hou XQ; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China., Jia Z; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China., Zhang DD; Department of Biology, Lund University, Lund, Sweden., Wang G; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
المصدر: Insect science [Insect Sci] 2024 Aug; Vol. 31 (4), pp. 1107-1120. Date of Electronic Publication: 2023 Nov 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: Australia NLM ID: 101266965 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-7917 (Electronic) Linking ISSN: 16729609 NLM ISO Abbreviation: Insect Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Victoria, Australia : Blackwell Pub., c2005-
مواضيع طبية MeSH: Receptors, Odorant*/genetics , Receptors, Odorant*/metabolism , Receptors, Odorant*/chemistry , Moths*/genetics , Moths*/metabolism , Oxylipins*/metabolism, Animals ; Phylogeny ; Insect Proteins/genetics ; Insect Proteins/metabolism ; Insect Proteins/chemistry ; Molecular Docking Simulation ; Cyclopentanes
مستخلص: In insects, the odorant receptor (OR) multigene family evolves by the birth-and-death evolutionary model, according to which the OR repertoire of each species has undergone specific gene gains and losses depending on their chemical environment, resulting in taxon-specific OR lineage radiations with different sizes in the phylogenetic trees. Despite the general divergence in the gene family across different insect orders, the ORs in moths seem to be genetically conserved across species, clustered into 23 major clades containing multiple orthologous groups with single-copy gene from each species. We hypothesized that ORs in these orthologous groups are tuned to ecologically important compounds and functionally conserved. cis-Jasmone is one of the compounds that not only primes the plant defense of neighboring receiver plants, but also functions as a behavior regulator to various insects. To test our hypothesis, using Xenopus oocyte recordings, we functionally assayed the orthologues of BmorOR56, which has been characterized as a specific receptor for cis-jasmone. Our results showed highly conserved response specificity of the BmorOR56 orthologues, with all receptors within this group exclusively responding to cis-jasmone. This is supported by the dN/dS analysis, showing that strong purifying selection is acting on this group. Moreover, molecular docking showed that the ligand binding pockets of BmorOR56 orthologues to cis-jasmone are similar. Taken together, our results suggest the high conservation of OR for ecologically important compounds across Heterocera.
(© 2023 Institute of Zoology, Chinese Academy of Sciences.)
References: Adasme, M.F., Linnemann, K.L., Bolz, S.N., Kaiser, F., Salentin, S., Haupt, V.J., et al. (2021) PLIP 2021: expanding the scope of the protein‐ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49, W530–W534.
Alborn, H.T., Turlings, T.C.J., Jones, T.H., Stenhagen, G., Loughrin, J.H. and Tumlinson, J.H. (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science, 276, 945–949.
Andersson, M.N., Löfstedt, C. and Newcomb, R.D. (2015) Insect olfaction and the evolution of receptor tuning. Frontiers in Ecology and Evolution, 3, 53.
Anisimova, M., Bielawski, J.P. and Yang, Z. (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Molecular Biology and Evolution, 18, 1585–1592.
Bayram, A. and Tonğa, A. (2018) cis‐Jasmone treatments affect pests and beneficial insects of wheat (Triticum aestivum L.): the influence of doses and plant growth stages. Crop Protection, 105, 70–79.
Benton, R., Sachse, S., Michnick, S.W. and Vosshall, L.B. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biology, 4, e20.
Birkett, M.A., Campbell, C.A., Chamberlain, K., Guerrieri, E., Hick, A.J., Martin, J.L., et al. (2000) New roles for cis‐jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences USA, 97, 9329–9334.
Bruce, T.J., Matthes, M.C., Chamberlain, K., Woodcock, C.M., Mohib, A., Webster, B., et al. (2008) cis‐Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proceedings of the National Academy of Sciences USA, 105, 4553–4558.
Bruce, T.J., Martin, J.L., Pickett, J.A., Pye, B.J., Smart, L.E. and Wadhams, L.J. (2003) cis‐Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Management Science, 59, 1031–1036.
Butterwick, J.A., del Mármol, J., Kim, K.H., Kahlson, M.A., Rogow, J.A., Walz, T., et al. (2018) Cryo‐EM structure of the insect olfactory receptor Orco. Nature, 560, 447–452.
Chamberlain, K., Pickett, J.A. and Woodcock, C.M. (2000) Plant signaling and induced defence in insect attack. Molecular Plant Pathology, 1, 67–72.
Clyne, P.J., Warr, C.G., Freeman, M.R., Lessing, D., Kim, J. and Carlson, J.R. (1999) A novel family of divergent seven‐transmembrane proteins: candidate odorant receptors in Drosophila. Neuron, 22, 327–338.
de Fouchier, A., Walker, W.B., Montagne, N., Steiner, C., Binyameen, M., Schlyter, F., et al. (2017) Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nature Communications, 8, 15709.
Dewhirst, S.Y., Birkett, M.A., Loza‐Reyes, E., Martin, J.L., Pye, B.J., Smart, L.E., et al. (2012) Activation of defence in sweet pepper, Capsicum annum, by cis‐jasmone, and its impact on aphid and aphid parasitoid behaviour. Pest Management Science, 68, 1419–1429.
Di, C., Ning, C., Huang, L.Q. and Wang, C.Z. (2017) Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm. Insect Biochemistry and Molecular Biology, 84, 48–62.
Disi, J.O., Zebelo, S., Ngumbi, E. and Fadamiro, H.Y. (2017) cis‐Jasmone primes defense pathways in tomato via emission of volatile organic compounds and regulation of genes with consequences for Spodoptera exigua oviposition. Arthropod‐Plant Interact, 11, 591–602.
Du, L., Zhao, X., Liang, X., Gao, X., Liu, Y. and Wang, G. (2018) Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis. BMC Genomics, 19, 518.
Fleischer, J. and Krieger, J. (2018) Insect pheromone receptors‐key elements in sensing intraspecific chemical signals. Frontiers in Cellular Neuroscience, 12, 425.
Fleischer, J., Pregitzer, P., Breer, H. and Krieger, J. (2018) Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cellular and Molecular Life Sciences, 75, 485–508.
Gao, Q. and Chess, A. (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics, 60, 31–39.
Gouin, A., Bretaudeau, A., Nam, K., Gimenez, S., Aury, J.M., Duvic, B., et al. (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host‐plant ranges. Scientific Reports, 7, 11816.
Guilloux, V.L., Schmidtke, P. and Tuffery, P. (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics, 10, 168.
Guo, M., Du, L., Chen, Q., Feng, Y., Zhang, J., Zhang, X., et al. (2021) Odorant receptors for detecting flowering plant cues are functionally conserved across moths and butterflies. Molecular Biology and Evolution, 38, 1413–1427.
Hansson, B.S. and Stensmyr, M.C. (2011) Evolution of insect olfaction. Neuron, 72, 698–711.
Hegde, M., Oliveira, J.N., da Costa, J.G., Loza‐Reyes, E., Bleicher, E., Santana, A.E., et al. (2012) Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis‐jasmone. Phytochemistry, 78, 81–88.
Hou, X., Zhang, D.D., Yuvaraja, J.K., Corcoran, J.A., Andersson, M.N. and Löfstedt, C. (2020) Functional characterization of odorant receptors from the moth Eriocrania semipurpurella: a comparison of results in the Xenopus oocyte and HEK cell systems. Insect Biochemistry and Molecular Biology, 117, 103289.
Hou, X.Q., Yuvaraj, J.K., Roberts, R.E., Zhang, D.D., Unelius, C.R., Löfstedt, C., et al. (2021) Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins. Molecular Biology and Evolution, 38, 4934–4947.
Ioannidis, P., Simao, F.A., Waterhouse, R.M., Manni, M., Seppey, M., Robertson, H.M., et al. (2017) Genomic features of the damselfly Calopteryx splendens representing a sister clade to most insect orders. Genome Biology and Evolution, 9, 415–430.
Karban, R. and Kuc, J. (1999) Induced resistance against pathogens and herbivores: an overview. In: Ecology (eds. A.A. Agrawal, S. Tuzun & E. Bent), pp. 1–16. Academic Press, St. Paul, MN.
Koenig, C., Hirsh, A., Bucks, S., Klinner, C., Vogel, H., Shukla, A., et al. (2015) A reference gene set for chemosensory receptor genes of Manduca sexta. Insect Biochemistry and Molecular Biology, 66, 51–63.
Koonin, E.V. (2005) Orthologs, paralogs, and evolutionary genomics. Annual Review of Genetics, 39, 309–338.
Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H. and Vosshall, L.B. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43, 703–714.
Laskowski, R.A. and Swindells, M.B. (2011) LigPlot+: multiple ligand‐protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.
Leal, W.S. (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373–391.
Liu, N., Xu, W., Papanicolaou, A., Dong, S. and Anderson, A. (2014) Identification and characterization of three chemosensory receptor families in the cotton bollworm Helicoverpa armigera. BMC Genomics, 15, e597.
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S. and Steinegger, M. (2022) ColabFold: making protein folding accessible to all. Nature Methods, 19, 679–682.
Mattiacci, L., Dicke, M. and Posthumus, M.A. (1995) Glucosidase: an elicitor of herbivore‐induced plant odor that attracts host‐searching parasitic wasps. Proceedings of the National Academy of Sciences USA, 92, 2036–2040.
Mitchell, R.F., Schneider, T.M., Schwartz, A.M., Andersson, M.N. and McKenna, D.D. (2020) The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Molecular Biology, 29, 77–91.
Moraes, M.C.B., Birkett, M.A., Gordon‐Weeks, R., Smart, L.E., Martin, J.L., Pye, B.J., et al. (2008) cis‐Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry, 69, 9–17.
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., et al. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.
Nei, M., Niimura, Y. and Nozawa, M. (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nature Reviews Genetics, 9, 951–963.
Nei, M. and Rooney, A.P. (2005) Concerted and birth‐and‐death evolution of multigene families. Annual Review of Genetics, 39, 121–152.
Oluwafemi, S., Dewhirst, S.Y., Veyrat, N., Veyrat, N., Powers, S., Bruce, T.J.A., et al. (2013) Priming of production in maize of volatile organic defence compounds by the natural plant activator cis‐Jasmone. PLoS ONE, 8, e62299.
Powell, W. and Pickett, J.A. (2003) Manipulation of parasitoids for aphid pest management: progress and prospects. Pest Management Science, 59, 149–155.
Rabieh, M.M. (2018) Biodiversity of noctuid moths (Lepidoptera: Noctuidae) in the agroecosystems of Mashhad County. Biodiversity International Journal, 2, 147–151.
Robertson, H.M. (2019) Molecular evolution of the major arthropod chemoreceptor gene families. Annual Review of Entomology, 64, 227–242.
Roberts, R.E., Biswas, T., Yuvaraja, J.K., Grosse‐Wilde, E., Powell, D., Hansson, B.S., et al. (2022) Odorant receptor orthologues in conifer‐feeding beetles display conserved responses to ecologically relevant odours. Molecular Ecology, 31, 3693–3707.
Sachse, S. and Krieger, J. (2011) Olfaction in insects. The primary processes of odor recognition and coding. Neuroforum, 2, 49–60.
Sobhy, I.S., Woodcock, C.M., Powers, S.J., Caulfield, J.C., Pickett, J.A. and Birkett, M.A. (2017) cis‐Jasmone elicits aphid‐induced stress signalling in potatoes. Journal of Chemical Ecology, 43, 39–52.
Sun, Y.L., Dong, J.F., Ning, C., Ding, P.P., Huang, L.Q., Sun, J.G., et al. (2019) An odorant receptor mediates the attractiveness of cis‐jasmone to Campoletis chlorideae, the endoparasitoid of Helicoverpa armigera. Insect Molecular Biology, 28, 23–34.
Tanaka, K., Uda, Y., Ono, Y., Nakagawa, T., Suwa, M., Yamaoka, R., et al. (2009) Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Current Biology, 19, 881–890.
Vieira, C.R., Moraes, M.C.B., Borges, M., Sujii, E.R. and Laumann, R.A. (2013) cis‐Jasmone indirect action on egg parasitoids (Hymenoptera: Scelionidae) and its application in biological control of soybean stink bugs (Hemiptera: Pentatomidae). Biological Control, 64, 75–82.
Vosshall, L.B., Amrein, H., Monsempes, C., Rzhetsky, A. and Axel, R. (1999) A special map of olfactory receptor expression in the Drosophila antenna. Cell, 96, 725–736.
Wang, B., Huang, T.Y., Yao, Y., Frederic, F., Yan, C.C., Wang, G., et al. (2022) A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis‐jasmone. Journal of Integrative Agriculture, 21, 2042–2054.
Yang, B., Ozaki, K., Ishikawa, Y. and Matsuo, T. (2015) Identification of candidate odorant receptors in Asian corn borer Ostrinia furnacalis. PLoS ONE, 10, e0121261.
Yang, Z. (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences, 13, 555–556.
Yang, Z. and Nielsen, R. (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. Journal of Molecular Evolution, 46, 409–418.
Zhang, D.D. and Löfstedt, C. (2013) Functional evolution of a multigene family: orthologous and paralogous pheromone receptor genes in the turnip moth, Agrotis segetum. PLoS ONE, 8, e77345.
Zhang, D.D., Hou, X.Q., Powell, D. and Löfstedt, C. (2023) Female‐biased expressed odorant receptor genes differentially tuned to repulsive or attractive plant volatile compounds in the turnip moths. BioRxiv: 2023/548602. Available from: https://doi.org/10.1101/2023.07.11.548602.
Zhou, X.F., Slone, J.D., Rokas, A., Berger, S.L., Liebig, J., Ray, A., et al. (2012) Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex‐specific signatures of odor coding. PLoS Genetics, 8, e1002930.
معلومات مُعتمدة: KQTD20180411143628272 Shenzhen Science and Technology Program; 32130089 National Natural Science Foundation of China; 32202307 National Natural Science Foundation of China; 2021M703548 China Postdoctoral Science Foundation; PT202101-02 Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District
فهرسة مساهمة: Keywords: cis‐jasmone; evolutionary conservation; functional characterization; molecular docking; moths; purifying selection
المشرفين على المادة: 0 (Receptors, Odorant)
0 (Oxylipins)
RC4W0G9YUK (jasmone)
0 (Insect Proteins)
0 (Cyclopentanes)
تواريخ الأحداث: Date Created: 20231127 Date Completed: 20240813 Latest Revision: 20240813
رمز التحديث: 20240813
DOI: 10.1111/1744-7917.13296
PMID: 38009986
قاعدة البيانات: MEDLINE
الوصف
تدمد:1744-7917
DOI:10.1111/1744-7917.13296