دورية أكاديمية

Role and application of chemokine CXCL13 in central nervous system lymphoma.

التفاصيل البيبلوغرافية
العنوان: Role and application of chemokine CXCL13 in central nervous system lymphoma.
المؤلفون: Li C; Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China., Zhang L; Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China., Jin Q; Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China., Jiang H; Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China., Wu C; Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China. wuchy0909@163.com.
المصدر: Annals of hematology [Ann Hematol] 2024 Aug; Vol. 103 (8), pp. 2671-2680. Date of Electronic Publication: 2023 Nov 27.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9107334 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0584 (Electronic) Linking ISSN: 09395555 NLM ISO Abbreviation: Ann Hematol Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer Verlag
Original Publication: Berlin ; New York : Springer International, c1991-
مواضيع طبية MeSH: Chemokine CXCL13*/cerebrospinal fluid , Chemokine CXCL13*/metabolism , Central Nervous System Neoplasms*/metabolism , Central Nervous System Neoplasms*/therapy , Lymphoma, Large B-Cell, Diffuse*/metabolism , Tumor Microenvironment* , Receptors, CXCR5*/metabolism, Humans ; Biomarkers, Tumor/metabolism ; Prognosis
مستخلص: Chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) both play significant roles in the tumor microenvironment (TME). CXCL13 in cerebrospinal fluid (CSF) has recently been found to have significant diagnostic and prognostic value in primary and secondary central nervous system (CNS) diffuse large B-cell lymphoma (DLBCL), and the CXCL13-CXCR5 axis has been shown to play an important chemotactic role in the TME of CNS-DLBCL. In this review, we first describe the clinical value of CXCL13 in CSF as a prognostic and diagnostic biomarker for CNS-DLBCL. In addition, this review also discusses the specific mechanisms associated with the CXCL13-CXCR5 axis in tumor immunity of primary diffuse large B cell lymphoma of the central nervous system (PCNS-DLBCL) by reviewing the specific mechanisms of this axis in the immune microenvironment of DLBCL and CNS inflammation, as well as the prospects for the use of CXCL13-CXCR5 axis in immunotherapy in PCNS-DLBCL.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B (1998) B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 187(4):655–660. https://doi.org/10.1084/jem.187.4.655. (PMID: 10.1084/jem.187.4.65594634162212150)
Carlsen HS, Baekkevold ES, Morton HC, Haraldsen G, Brandtzaeg P (2004) Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 104(10):3021–3027. https://doi.org/10.1182/blood-2004-02-0701. (PMID: 10.1182/blood-2004-02-070115284119)
Wang X, Cho B, Suzuki K, Xu Y, Green JA, An J et al (2011) Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 208(12):2497–2510. https://doi.org/10.1084/jem.20111449. (PMID: 10.1084/jem.20111449220429773256970)
Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N et al (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 5(9):943–952. https://doi.org/10.1038/ni1100. (PMID: 10.1038/ni110015300245)
Ansel KM, Harris RB, Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16(1):67–76. https://doi.org/10.1016/s1074-7613(01)00257-6. (PMID: 10.1016/s1074-7613(01)00257-611825566)
Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127. https://doi.org/10.1016/s1074-7613(00)80165-x. (PMID: 10.1016/s1074-7613(00)80165-x10714678)
Shi W, Yang B, Sun Q, Meng J, Zhao X, Du S et al (2020) PD-1 regulates CXCR5(+) CD4 T cell-mediated proinflammatory functions in non-small cell lung cancer patients. Int Immunopharmacol 82:106295. https://doi.org/10.1016/j.intimp.2020.106295. (PMID: 10.1016/j.intimp.2020.10629532087496)
Cha Z, Qian G, Zang Y, Gu H, Huang Y, Zhu L et al (2017) Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway. Exp Cell Res 350(1):154–160. https://doi.org/10.1016/j.yexcr.2016.11.017. (PMID: 10.1016/j.yexcr.2016.11.01727888017)
Pimenta EM, De S, Weiss R, Feng D, Hall K, Kilic S et al (2015) IRF5 is a novel regulator of CXCL13 expression in breast cancer that regulates CXCR5(+) B- and T-cell trafficking to tumor-conditioned media. Immunol Cell Biol 93(5):486–499. https://doi.org/10.1038/icb.2014.110. (PMID: 10.1038/icb.2014.11025533286)
Wang GZ, Cheng X, Zhou B, Wen ZS, Huang YC, Chen HB et al (2015) The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife:4. https://doi.org/10.7554/eLife.09419.
Müller G, Höpken UE, Lipp M (2003) The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev 195:117–135. https://doi.org/10.1034/j.1600-065x.2003.00073.x. (PMID: 10.1034/j.1600-065x.2003.00073.x12969315)
Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159. https://doi.org/10.1146/annurev.immunol.23.021704.115628. (PMID: 10.1146/annurev.immunol.23.021704.11562815771568)
Förster R, Emrich T, Kremmer E, Lipp M (1994) Expression of the G-protein--coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84(3):830–840. (PMID: 10.1182/blood.V84.3.830.bloodjournal8438307913842)
Kazanietz MG, Durando M, Cooke M (2019) CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond. Front Endocrinol 10:471. https://doi.org/10.3389/fendo.2019.00471. (PMID: 10.3389/fendo.2019.00471)
Jang IK, Cronshaw DG, Xie LK, Fang G, Zhang J, Oh H et al (2011) Growth-factor receptor-bound protein-2 (Grb2) signaling in B cells controls lymphoid follicle organization and germinal center reaction. Proc Natl Acad Sci U S A 108(19):7926–7931. https://doi.org/10.1073/pnas.1016451108. (PMID: 10.1073/pnas.1016451108215083263093453)
Dürig J, Schmücker U, Dührsen U (2001) Differential expression of chemokine receptors in B cell malignancies. Leukemia 15(5):752–756. https://doi.org/10.1038/sj.leu.2402107. (PMID: 10.1038/sj.leu.240210711368435)
Grommes C, DeAngelis LM (2017) Primary CNS Lymphoma. J Clin Oncol 35(21):2410–2418. https://doi.org/10.1200/jco.2017.72.7602. (PMID: 10.1200/jco.2017.72.7602286407015516483)
Rubenstein JL, Wong VS, Kadoch C, Gao HX, Barajas R, Chen L et al (2013) CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. Blood 121(23):4740–4748. https://doi.org/10.1182/blood-2013-01-476333. (PMID: 10.1182/blood-2013-01-476333235707983674672)
Mabray MC, Barajas RF, Villanueva-Meyer JE, Zhang CA, Valles FE, Rubenstein JL et al (2016) The combined performance of ADC, CSF CXC chemokine ligand 13, and CSF interleukin 10 in the diagnosis of central nervous system lymphoma. AJNR Am J Neuroradiol 37(1):74–79. https://doi.org/10.3174/ajnr.A4450. (PMID: 10.3174/ajnr.A4450263815534713285)
Brunn A, Montesinos-Rongen M, Strack A, Reifenberger G, Mawrin C, Schaller C et al (2007) Expression pattern and cellular sources of chemokines in primary central nervous system lymphoma. Acta Neuropathol 114(3):271–276. https://doi.org/10.1007/s00401-007-0258-x. (PMID: 10.1007/s00401-007-0258-x17641901)
Jahnke K, Coupland SE, Na IK, Loddenkemper C, Keilholz U, Korfel A et al (2005) Expression of the chemokine receptors CXCR4, CXCR5, and CCR7 in primary central nervous system lymphoma. Blood 106(1):384–385. https://doi.org/10.1182/blood-2005-01-0324. (PMID: 10.1182/blood-2005-01-032415967804)
Smith JR, Braziel RM, Paoletti S, Lipp M, Uguccioni M, Rosenbaum JT (2003) Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes and vascular endothelium in primary central nervous system lymphoma. Blood 101(3):815–821. https://doi.org/10.1182/blood-2002-05-1576. (PMID: 10.1182/blood-2002-05-157612393412)
Smith JR, Falkenhagen KM, Coupland SE, Chipps TJ, Rosenbaum JT, Braziel RM (2007) Malignant B cells from patients with primary central nervous system lymphoma express stromal cell-derived factor-1. Am J Clin Pathol 127(4):633–641. https://doi.org/10.1309/nuqhj79bhwyd9taf. (PMID: 10.1309/nuqhj79bhwyd9taf17369141)
Heming M, Haessner S, Wolbert J, Lu IN, Li X, Brokinkel B et al (2022) Intratumor heterogeneity and T cell exhaustion in primary CNS lymphoma. Genome Med 14(1):109. https://doi.org/10.1186/s13073-022-01110-1. (PMID: 10.1186/s13073-022-01110-1361535939509601)
Li Z, Mahesh SP, Shen DF, Liu B, Siu WO, Hwang FS et al (2006) Eradication of tumor colonization and invasion by a B cell-specific immunotoxin in a murine model for human primary intraocular lymphoma. Cancer Res 66(21):10586–10593. https://doi.org/10.1158/0008-5472.Can-06-1981. (PMID: 10.1158/0008-5472.Can-06-1981170794831931503)
Chan CC, Shen D, Hackett JJ, Buggage RR, Tuaillon N (2003) Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma. Ophthalmology 110(2):421–426. https://doi.org/10.1016/s0161-6420(02)01737-2. (PMID: 10.1016/s0161-6420(02)01737-212578791)
Chan CC (2003) Molecular pathology of primary intraocular lymphoma. Trans Am Ophthalmol Soc 101:275–292. (PMID: 149715831358994)
Babst N, Isbell LK, Rommel F, Tura A, Ranjbar M, Grisanti S et al (2022) CXCR4, CXCR5 and CD44 may be involved in homing of lymphoma cells into the eye in a patient derived xenograft homing mouse model for primary vitreoretinal lymphoma. Int J Mol Sci 23(19). https://doi.org/10.3390/ijms231911757.
Pasqualucci L, Dalla-Favera R (2018) Genetics of diffuse large B-cell lymphoma. Blood 131(21):2307–2319. https://doi.org/10.1182/blood-2017-11-764332. (PMID: 10.1182/blood-2017-11-764332296661155969374)
Fischer L, Korfel A, Pfeiffer S, Kiewe P, Volk HD, Cakiroglu H et al (2009) CXCL13 and CXCL12 in central nervous system lymphoma patients. Clin Cancer Res 15(19):5968–5973. https://doi.org/10.1158/1078-0432.Ccr-09-0108. (PMID: 10.1158/1078-0432.Ccr-09-010819773382)
Hochberg FH, Miller DC (1988) Primary central nervous system lymphoma. J Neurosurg 68(6):835–853. https://doi.org/10.3171/jns.1988.68.6.0835. (PMID: 10.3171/jns.1988.68.6.08353286832)
Jiang L, Marlow LA, Cooper SJ, Roemeling CV, Menke DM, Copland JA et al (2010) Selective central nervous system tropism of primary central nervous system lymphoma. Int J Clin Exp Pathol 3(8):763–767. (PMID: 211513892993226)
Lemma SA, Pasanen AK, Haapasaari KM, Sippola A, Sormunen R, Soini Y et al (2016) Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study. Eur J Haematol 96(5):492–501. https://doi.org/10.1111/ejh.12626. (PMID: 10.1111/ejh.1262626153511)
Tun HW, Personett D, Baskerville KA, Menke DM, Jaeckle KA, Kreinest P et al (2008) Pathway analysis of primary central nervous system lymphoma. Blood. 111(6):3200–3210. https://doi.org/10.1182/blood-2007-10-119099. (PMID: 10.1182/blood-2007-10-119099181848682265457)
Sugita Y, Terasaki M, Nakashima S, Ohshima K, Morioka M, Abe H (2015) Perivascular microenvironment in primary central nervous system lymphomas: the role of chemokines and the endothelin B receptor. Brain Tumor Pathol 32(1):41–48. https://doi.org/10.1007/s10014-014-0206-0. (PMID: 10.1007/s10014-014-0206-025433721)
Alderson L, Fetell MR, Sisti M, Hochberg F, Cohen M, Louis DN (1996) Sentinel lesions of primary CNS lymphoma. J Neurol Neurosurg Psychiatry 60(1):102–105. https://doi.org/10.1136/jnnp.60.1.102. (PMID: 10.1136/jnnp.60.1.1028558135486201)
Mazzucchelli L, Blaser A, Kappeler A, Schärli P, Laissue JA, Baggiolini M et al (1999) BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J Clin Invest 104(10):R49–R54. https://doi.org/10.1172/jci7830. (PMID: 10.1172/jci783010562310481995)
Xanthou G, Polihronis M, Tzioufas AG, Paikos S, Sideras P, Moutsopoulos HM (2001) “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjögren’s syndrome patients: possible participation in lymphoid structure formation. Arthritis Rheum 44(2):408–418. https://doi.org/10.1002/1529-0131(200102)44:2<408::Aid-anr60>3.0.Co;2-0. (PMID: 10.1002/1529-0131(200102)44:2<408::Aid-anr60>3.0.Co;2-011229473)
Sáez de Guinoa J, Barrio L, Mellado M, Carrasco YR (2011) CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics. Blood 118(6):1560–1569. https://doi.org/10.1182/blood-2011-01-332106. (PMID: 10.1182/blood-2011-01-33210621659539)
Venetz D, Ponzoni M, Schiraldi M, Ferreri AJ, Bertoni F, Doglioni C et al (2010) Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: T-cell infiltration and positioning of malignant B cells. Int J Cancer 127(10):2300–2312. https://doi.org/10.1002/ijc.25236. (PMID: 10.1002/ijc.2523620872671)
van Westrhenen A, Smidt LCA, Seute T, Nierkens S, Stork ACJ, Minnema MC et al (2018) Diagnostic markers for CNS lymphoma in blood and cerebrospinal fluid: a systematic review. Br J Haematol 182(3):384–403. https://doi.org/10.1111/bjh.15410. (PMID: 10.1111/bjh.15410298089306099264)
Maeyama M, Sasayama T, Tanaka K, Nakamizo S, Tanaka H, Nishihara M et al (2020) Multi-marker algorithms based on CXCL13, IL-10, sIL-2 receptor, and β2-microglobulin in cerebrospinal fluid to diagnose CNS lymphoma. Cancer Med 9(12):4114–4125. https://doi.org/10.1002/cam4.3048. (PMID: 10.1002/cam4.3048323145487300423)
Masouris I, Manz K, Pfirrmann M, Dreyling M, Angele B, Straube A et al (2021) CXCL13 and CXCL9 CSF levels in central nervous system lymphoma-diagnostic, therapeutic, and prognostic relevance. Front Neurol 12:654543. https://doi.org/10.3389/fneur.2021.654543. (PMID: 10.3389/fneur.2021.654543338413208032970)
Qi XW, Xia SH, Yin Y, Jin LF, Pu Y, Hua D et al (2014) Expression features of CXCR5 and its ligand, CXCL13 associated with poor prognosis of advanced colorectal cancer. Eur Rev Med Pharmacol Sci 18(13):1916–1924. (PMID: 25010623)
Mir MA, Maurer MJ, Ziesmer SC, Slager SL, Habermann T, Macon WR et al (2015) Elevated serum levels of IL-2R, IL-1RA, and CXCL9 are associated with a poor prognosis in follicular lymphoma. Blood 125(6):992–998. https://doi.org/10.1182/blood-2014-06-583369. (PMID: 10.1182/blood-2014-06-583369254221004319239)
Wieduwilt MJ, Valles F, Issa S, Behler CM, Hwang J, McDermott M et al (2012) Immunochemotherapy with intensive consolidation for primary CNS lymphoma: a pilot study and prognostic assessment by diffusion-weighted MRI. Clin Cancer Res 18(4):1146–1155. https://doi.org/10.1158/1078-0432.Ccr-11-0625. (PMID: 10.1158/1078-0432.Ccr-11-0625222286343288204)
Grommes C, Nayak L, Tun HW, Batchelor TT (2019) Introduction of novel agents in the treatment of primary CNS lymphoma. Neuro-oncology 21(3):306–313. https://doi.org/10.1093/neuonc/noy193. (PMID: 10.1093/neuonc/noy19330423172)
Yu L, Li L, Medeiros LJ, Young KH (2017) NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 31(2):77–92. https://doi.org/10.1016/j.blre.2016.10.001. (PMID: 10.1016/j.blre.2016.10.00127773462)
Young RM, Wu T, Schmitz R, Dawood M, Xiao W, Phelan JD et al (2015) Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc Natl Acad Sci U S A 112(44):13447–13454. https://doi.org/10.1073/pnas.1514944112. (PMID: 10.1073/pnas.1514944112264834594640740)
Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463(7277):88–92. https://doi.org/10.1038/nature08638. (PMID: 10.1038/nature08638200543962845535)
Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science (New York, NY) 319(5870):1676–1679. https://doi.org/10.1126/science.1153629. (PMID: 10.1126/science.1153629)
Soussain C, Choquet S, Blonski M, Leclercq D, Houillier C, Rezai K et al (2019) Ibrutinib monotherapy for relapse or refractory primary CNS lymphoma and primary vitreoretinal lymphoma: final analysis of the phase II ‘proof-of-concept’ iLOC study by the Lymphoma study association (LYSA) and the French oculo-cerebral lymphoma (LOC) network. Eur J Cancer 117:121–130. https://doi.org/10.1016/j.ejca.2019.05.024. (PMID: 10.1016/j.ejca.2019.05.02431279304)
Buggy JJ, Elias L (2012) Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol 31(2):119–132. https://doi.org/10.3109/08830185.2012.664797. (PMID: 10.3109/08830185.2012.66479722449073)
Kil LP, de Bruijn MJ, van Nimwegen M, Corneth OB, van Hamburg JP, Dingjan GM et al (2012) Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119(16):3744–3756. https://doi.org/10.1182/blood-2011-12-397919. (PMID: 10.1182/blood-2011-12-39791922383797)
Robak T, Robak P (2013) BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Int Rev Immunol 32(4):358–376. https://doi.org/10.3109/08830185.2013.786711. (PMID: 10.3109/08830185.2013.78671123617253)
Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG et al (2009) B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 114(5):1029–1037. https://doi.org/10.1182/blood-2009-03-212837. (PMID: 10.1182/blood-2009-03-212837194913904916941)
de Gorter DJ, Beuling EA, Kersseboom R, Middendorp S, van Gils JM, Hendriks RW et al (2007) Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity 26(1):93–104. https://doi.org/10.1016/j.immuni.2006.11.012. (PMID: 10.1016/j.immuni.2006.11.01217239630)
de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ et al (2012) The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119(11):2590–2594. https://doi.org/10.1182/blood-2011-11-390989. (PMID: 10.1182/blood-2011-11-39098922279054)
Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119(5):1182–1189. https://doi.org/10.1182/blood-2011-10-386417. (PMID: 10.1182/blood-2011-10-386417221804434916557)
Irani DN (2016) Regulated production of CXCL13 within the central nervous system. J Clin Cell Immunol 7(5). https://doi.org/10.4172/2155-9899.1000460.
Huber AK, Irani DN (2015) Targeting CXCL13 during neuroinflammation. Adv Neuroimmune Biol 6(1):1–8. https://doi.org/10.3233/nib-150101. (PMID: 10.3233/nib-150101268556874743661)
Li R, Ma L, Huang H, Ou S, Yuan J, Xu T et al (2017) Altered expression of CXCL13 and CXCR5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochem Res 42(2):526–540. https://doi.org/10.1007/s11064-016-2102-y. (PMID: 10.1007/s11064-016-2102-y27873133)
Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T et al (2012) CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation 9:93. https://doi.org/10.1186/1742-2094-9-93. (PMID: 10.1186/1742-2094-9-93225918623418196)
Wang J, Yin C, Pan Y, Yang Y, Li W, Ni H et al (2023) CXCL13 contributes to chronic pain of a mouse model of CRPS-I via CXCR5-mediated NF-κB activation and pro-inflammatory cytokine production in spinal cord dorsal horn. J Neuroinflammation 20(1):109. https://doi.org/10.1186/s12974-023-02778-x. (PMID: 10.1186/s12974-023-02778-x3715893910165831)
Shen Y, Zhang Y, Du J, Jiang B, Shan T, Li H et al (2021) CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway. J Neuroinflammation 18(1):246. https://doi.org/10.1186/s12974-021-02300-1. (PMID: 10.1186/s12974-021-02300-1347112168554863)
Schaff LR, Grommes C (2021) Update on novel therapeutics for primary CNS lymphoma. Cancers 13(21). https://doi.org/10.3390/cancers13215372.
Ponzoni M, Berger F, Chassagne-Clement C, Tinguely M, Jouvet A, Ferreri AJ et al (2007) Reactive perivascular T-cell infiltrate predicts survival in primary central nervous system B-cell lymphomas. Br J Haematol 138(3):316–323. https://doi.org/10.1111/j.1365-2141.2007.06661.x. (PMID: 10.1111/j.1365-2141.2007.06661.x17555470)
Riemersma SA, Oudejans JJ, Vonk MJ, Dreef EJ, Prins FA, Jansen PM et al (2005) High numbers of tumour-infiltrating activated cytotoxic T lymphocytes, and frequent loss of HLA class I and II expression, are features of aggressive B cell lymphomas of the brain and testis. J Pathol 206(3):328–336. https://doi.org/10.1002/path.1783. (PMID: 10.1002/path.178315887291)
Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192(11):1553–1562. https://doi.org/10.1084/jem.192.11.1553. (PMID: 10.1084/jem.192.11.1553111047982193097)
Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192(11):1545–1552. https://doi.org/10.1084/jem.192.11.1545. (PMID: 10.1084/jem.192.11.1545111047972193094)
Pedemonte E, Mancardi G, Giunti D, Corcione A, Benvenuto F, Pistoia V et al (2006) Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases. Pharmacol Ther 111(3):555–566. https://doi.org/10.1016/j.pharmthera.2005.11.007. (PMID: 10.1016/j.pharmthera.2005.11.00716442633)
Nerviani A, Pitzalis C (2018) Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J Leukoc Biol 104(2):333–341. https://doi.org/10.1002/jlb.3mr0218-062r. (PMID: 10.1002/jlb.3mr0218-062r29947426)
Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P et al (2022) The CXCL13/CXCR5 immune axis in health and disease-implications for intrathecal B Cell activities in neuroinflammation. Cells 11(17). https://doi.org/10.3390/cells11172649.
Tang J, Zha J, Guo X, Shi P, Xu B (2017) CXCR5(+)CD8(+) T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma. Int Immunopharmacol 50:146–151. https://doi.org/10.1016/j.intimp.2017.06.020. (PMID: 10.1016/j.intimp.2017.06.02028662433)
Ohmatsu H, Sugaya M, Kadono T, Tamaki K (2007) CXCL13 and CCL21 are expressed in ectopic lymphoid follicles in cutaneous lymphoproliferative disorders. J Invest Dermatol 127(10):2466–2468. https://doi.org/10.1038/sj.jid.5700873. (PMID: 10.1038/sj.jid.570087317495955)
Yu H, Shahsafaei A, Dorfman DM (2009) Germinal-center T-helper-cell markers PD-1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic T-cell lymphoma. Am J Clin Pathol 131(1):33–41. https://doi.org/10.1309/ajcp62wrkerpxdrt. (PMID: 10.1309/ajcp62wrkerpxdrt19095563)
Rousset F, Garcia E, Defrance T, Péronne C, Vezzio N, Hsu DH et al (1992) Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A 89(5):1890–1893. https://doi.org/10.1073/pnas.89.5.1890. (PMID: 10.1073/pnas.89.5.1890137188448559)
Cha Z, Gu H, Zang Y, Wang Z, Li J, Huang W et al (2018) The prevalence and function of CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells in diffuse large B cell lymphoma. Int Immunopharmacol 61:132–139. https://doi.org/10.1016/j.intimp.2018.05.025. (PMID: 10.1016/j.intimp.2018.05.02529870918)
Müller G, Lipp M (2001) Signal transduction by the chemokine receptor CXCR5: structural requirements for G protein activation analyzed by chimeric CXCR1/CXCR5 molecules. Biol Chem 382(9):1387–1397. https://doi.org/10.1515/bc.2001.171. (PMID: 10.1515/bc.2001.17111688722)
Dieu-Nosjean MC, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C (2016) Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 271(1):260–275. https://doi.org/10.1111/imr.12405. (PMID: 10.1111/imr.1240527088920)
Nayak L, Iwamoto FM, LaCasce A, Mukundan S, Roemer MGM, Chapuy B et al (2017) PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 129(23):3071–3073. https://doi.org/10.1182/blood-2017-01-764209. (PMID: 10.1182/blood-2017-01-764209283562475766844)
Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K et al (2023) Primary central nervous system lymphoma. Nat Rev Dis Primers 9(1):29. https://doi.org/10.1038/s41572-023-00439-0. (PMID: 10.1038/s41572-023-00439-03732201210637780)
Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ et al (2019) Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176(4):775–89.e18. https://doi.org/10.1016/j.cell.2018.11.043. (PMID: 10.1016/j.cell.2018.11.04330595452)
Groeneveld CS, Fontugne J, Cabel L, Bernard-Pierrot I, Radvanyi F, Allory Y et al (2021) Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy. Eur J Cancer 148:181–189. https://doi.org/10.1016/j.ejca.2021.01.036. (PMID: 10.1016/j.ejca.2021.01.03633743486)
Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S et al (2020) Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577(7791):561–565. https://doi.org/10.1038/s41586-019-1914-8. (PMID: 10.1038/s41586-019-1914-831942071)
Goswami S, Chen Y, Anandhan S, Szabo PM, Basu S, Blando JM et al (2020) ARID1A mutation plus CXCL13 expression act as combinatorial biomarkers to predict responses to immune checkpoint therapy in mUCC. Sci Transl Med 12(548). https://doi.org/10.1126/scitranslmed.abc4220.
Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC et al (2016) Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537(7620):417–421. https://doi.org/10.1038/nature19330. (PMID: 10.1038/nature19330275012485297183)
Liu B, Zhang Y, Wang D, Hu X, Zhang Z (2022) Single-cell meta-analyses reveal responses of tumor-reactive CXCL13(+) T cells to immune-checkpoint blockade. Nat Can 3(9):1123–1136. https://doi.org/10.1038/s43018-022-00433-7. (PMID: 10.1038/s43018-022-00433-7)
Phillips D, Matusiak M, Gutierrez BR, Bhate SS, Barlow GL, Jiang S et al (2021) Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma. Nat Commun 12(1):6726. https://doi.org/10.1038/s41467-021-26974-6. (PMID: 10.1038/s41467-021-26974-6347952548602403)
Miyao K, Yokota H, Sakemura RL (2022) Is CD19-directed chimeric antigen receptor T cell therapy a smart strategy to combat central nervous system lymphoma? Front Oncol 12:1082235. https://doi.org/10.3389/fonc.2022.1082235. (PMID: 10.3389/fonc.2022.108223536686821)
Frigault MJ, Dietrich J, Gallagher K, Roschewski M, Jordan JT, Forst D et al (2022) Safety and efficacy of tisagenlecleucel in primary CNS lymphoma: a phase 1/2 clinical trial. Blood 139(15):2306–2315. https://doi.org/10.1182/blood.2021014738. (PMID: 10.1182/blood.2021014738351676559012129)
Tu S, Zhou X, Guo Z, Huang R, Yue C, He Y et al (2019) CD19 and CD70 dual-target chimeric antigen receptor T-Cell therapy for the treatment of relapsed and refractory primary central nervous system diffuse large B-Cell lymphoma. Front Oncol 9:1350. https://doi.org/10.3389/fonc.2019.01350. (PMID: 10.3389/fonc.2019.01350318672756904344)
Alcantara M, Houillier C, Blonski M, Rubio MT, Willems L, Rascalou AW et al (2022) CAR T-cell therapy in primary central nervous system lymphoma: the clinical experience of the French LOC network. Blood 139(5):792–796. https://doi.org/10.1182/blood.2021012932. (PMID: 10.1182/blood.2021012932348713638814680)
Bunse M, Pfeilschifter J, Bluhm J, Zschummel M, Joedicke JJ, Wirges A et al (2021) CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin’s lymphoma and tumor-supportive follicular T helper cells. Nat Commun 12(1):240. https://doi.org/10.1038/s41467-020-20488-3. (PMID: 10.1038/s41467-020-20488-3334318327801647)
معلومات مُعتمدة: 82260041 National Natural Science Foundation of China; 22JR11RA053 Natural Science Foundation of Gansu Province; 201710 CuiYing Postgraduate Tutor" training program of Lanzhou University Second Hospital
فهرسة مساهمة: Keywords: CXCL13; CXCR5; Central nervous system inflammation; Primary central nervous system lymphoma
المشرفين على المادة: 0 (Chemokine CXCL13)
0 (CXCL13 protein, human)
0 (Receptors, CXCR5)
0 (CXCR5 protein, human)
0 (Biomarkers, Tumor)
تواريخ الأحداث: Date Created: 20231127 Date Completed: 20240728 Latest Revision: 20240728
رمز التحديث: 20240729
DOI: 10.1007/s00277-023-05560-4
PMID: 38010409
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0584
DOI:10.1007/s00277-023-05560-4