دورية أكاديمية

Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy.

التفاصيل البيبلوغرافية
العنوان: Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy.
المؤلفون: Weth FR; Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.; Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand., Hoggarth GB; Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand., Weth AF; Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand., Paterson E; Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand., White MPJ; Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand., Tan ST; Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, 5040, New Zealand.; Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia., Peng L; Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand., Gray C; Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand. clint.gray@gmri.org.nz.; Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand. clint.gray@gmri.org.nz.
المصدر: British journal of cancer [Br J Cancer] 2024 Mar; Vol. 130 (5), pp. 703-715. Date of Electronic Publication: 2023 Nov 27.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group on behalf of Cancer Research UK Country of Publication: England NLM ID: 0370635 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1532-1827 (Electronic) Linking ISSN: 00070920 NLM ISO Abbreviation: Br J Cancer Subsets: MEDLINE
أسماء مطبوعة: Publication: 2002- : London : Nature Publishing Group on behalf of Cancer Research UK
Original Publication: London, Lewis.
مواضيع طبية MeSH: Neoplasms*/drug therapy , Antineoplastic Agents*/therapeutic use , Antineoplastic Agents*/pharmacology, Humans ; Drug Repositioning ; Medical Oncology ; Combined Modality Therapy
مستخلص: High rates of failure, exorbitant costs, and the sluggish pace of new drug discovery and development have led to a growing interest in repurposing "old" drugs to treat both common and rare diseases, particularly cancer. Cancer, a complex and heterogeneous disease, often necessitates a combination of different treatment modalities to achieve optimal outcomes. The intrinsic polygenicity of cancer, intricate biological signalling networks, and feedback loops make the inhibition of a single target frequently insufficient for achieving the desired therapeutic impact. As a result, addressing these complex or "smart" malignancies demands equally sophisticated treatment strategies. Combinatory treatments that target the multifaceted oncogenic signalling network hold immense promise. Repurposed drugs offer a potential solution to this challenge, harnessing known compounds for new indications. By avoiding the prohibitive costs and long development timelines associated with novel cancer drugs, this approach holds the potential to usher in more effective, efficient, and cost-effective cancer treatments. The pursuit of combinatory therapies through drug repurposing may hold the key to achieving superior outcomes for cancer patients. However, drug repurposing faces significant commercial, technological and regulatory challenges that need to be addressed. This review explores the diverse approaches employed in drug repurposing, delves into the challenges faced by the drug repurposing community, and presents innovative solutions to overcome these obstacles. By emphasising the significance of combinatory treatments within the context of drug repurposing, we aim to unlock the full potential of this approach for enhancing cancer therapy. The positive aspects of drug repurposing in oncology are underscored here; encompassing personalized treatment, accelerated development, market opportunities for shelved drugs, cancer prevention, expanded patient reach, improved patient access, multi-partner collaborations, increased likelihood of approval, reduced costs, and enhanced combination therapy.
(© 2023. The Author(s).)
References: Toumi M, Rémuzat C. Value added medicines: what value repurposed medicines might bring to society? J Mark Access Health Policy. 2017;5:1264717. (PMID: 28265347)
Adair FE, Bagg HJ. Experimental and clinical studies on the treatment of cancer by Dichlorethylsulphide (Mustard Gas). Ann Surg.1931;93:190–9. https://oce-ovid-com.wmezproxy.wnmeds.ac.nz/article/00000658-193101000-00026/HTML . (PMID: 178664621398743)
Haddow A. On the biological alkylating agents. Perspect Biol Med.1973;16:503–24. https://muse.jhu.edu/article/405762 . (PMID: 4593768)
Schein CH. Repurposing approved drugs for cancer therapy. Br Med Bull.2021;137:13–27. https://academic.oup.com/bmb/article/137/1/13/6124816 . (PMID: 335173587929227)
Hernandez JJ, Pryszlak M, Smith L, Yanchus C, Kurji N, Shahani VM, et al. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front Oncol. 2017;14:7.
Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF. et al. The global burden of cancer 2013. JAMA Oncol. 2015;1:505–27. https://jamanetwork.com/journals/jamaoncology/fullarticle/2294966 . (PMID: 26181261)
Hofmarcher T, Lindgren P, Wilking N, Jönsson B. The cost of cancer in Europe 2018. Eur J Cancer. 2020;129:41–9. (PMID: 32120274)
Bertolini F, Sukhatme VP, Bouche G. Drug repurposing in oncology—patient and health systems opportunities. Nat Rev Clin Oncol. 2015;12:732–42. https://www.nature.com/articles/nrclinonc.2015.169 . (PMID: 26483297)
Howard DH, Bach PB, Berndt ER, Conti RM. Pricing in the market for anticancer drugs. J Econ Perspect. 2015;29:139–62. https://doi.org/10.1257/jep.29.1.139 . (PMID: 10.1257/jep.29.1.13928441702)
Vokinger KN, Hwang TJ, Grischott T, Reichert S, Tibau A, Rosemann T, et al. Prices and clinical benefit of cancer drugs in the USA and Europe: a cost–benefit analysis. Lancet Oncol. 2020;21:664–70. (PMID: 32359489)
Tangka FK, Trogdon JG, Richardson LC, Howard D, Sabatino SA, Finkelstein EA. Cancer treatment cost in the United States. Cancer. 2010;116:3477–84. https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.25150 . (PMID: 20564103)
Little A Beehive.govt.nz. 2022 [cited 2023 May 1]. Pharmac deal good news for New Zealanders. Available from: https://www.beehive.govt.nz/release/pharmac-deal-good-news-new-zealanders .
Main B, Csanadi M, Ozieranski P. Pricing strategies, executive committee power and negotiation leverage in New Zealand’s containment of public spending on pharmaceuticals. Health Econ Policy Law. 2022;17:348–65. https://www.cambridge.org/core/journals/health-economics-policy-and-law/article/pricing-strategies-executive-committee-power-and-negotiation-leverage-in-new-zealands-containment-of-public-spending-on-pharmaceuticals/573321297A6970CBB89C325D181637D8 . (PMID: 35382921)
IQVIA. IQVIA. 2023 [cited 2023 May 1]. The global use of medicines 2023 Outlook to 2027. Available from: https://www.iqvia.com/insights/the-iqvia-institute/reports/the-global-use-of-medicines-2023 .
Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200. https://www.nature.com/articles/nrd3681 . (PMID: 22378269)
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:1 [cited 2022 Dec 19]. Available from: https://www-nature-com.wmezproxy.wnmeds.ac.nz/articles/nbt.2786 .
Pushpakom S. Chapter 1: Introduction and historical overview of drug repurposing opportunities. RSC Drug Discov Ser. 2022;2022:1–13. https://pubs.rsc.org/en/content/chapterhtml/2022/bk9781839163401-00001 .
Nosengo N. Can you teach old drugs new tricks? Nature. 2016;534:314–6. (PMID: 27306171)
Palve V, Liao Y, Remsing Rix LL, Rix U. Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Semin Cancer Biol. 2021;68:209–29. (PMID: 32044472)
Pantziarka P, Verbaanderd C, Huys I, Bouche G, Meheus L.Repurposing drugs in oncology: from candidate selection to clinical adoption.Semin Cancer Biol. 2021;68:186–91. (PMID: 31982510)
Cha Y, Erez T, Reynolds IJ, Kumar D, Ross J, Koytiger G. et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol.2018;175:168–80. https://onlinelibrary.wiley.com/doi/full/10.1111/bph.13798 . (PMID: 28369768)
Hong SJ, Li EC, Matusiak LM, Schumock GT. Spending on antineoplastic agents in the United States, 2011 to 2016. (2018);18:14. https://doi.org/10.1200/JOP.18.00069 .
Weir SJ, DeGennaro LJ, Austin CP. Repurposing approved and abandoned drugs for the treatment and prevention of cancer through public–private partnership. Cancer Res. 2012;72:1055–8. (PMID: 222466713341848)
Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp Clin Trials Commun. 2018;11:156–64. (PMID: 301124606092479)
Mullard A. Parsing clinical success rates. Nat Rev Drug Discov. 2016;15:447–447. (PMID: 27357013)
Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A. et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2018;18:41–58. https://www.nature.com/articles/nrd.2018.168 . (PMID: 30310233)
Allarakhia M. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases. Drug Des Devel Ther. 2013;7:753–66.
Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE. et al. The drug repurposing hub: a next-generation drug library and information resource. Nat Med. 2017;23:405–8. https://www.nature.com/articles/nm.4306 . (PMID: 283886125568558)
Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife. 2017;22:6.
Mottini C, Napolitano F, Li Z, Gao X, Cardone L. Computer-aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin Cancer Biol. 2021;68:59–74. (PMID: 31562957)
Jin G, Wong STC. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today. 2014;19:637–44. (PMID: 24239728)
Parisi D, Adasme MF, Sveshnikova A, Bolz SN, Moreau Y, Schroeder M. Drug repositioning or target repositioning: a structural perspective of drug-target-indication relationship for available repurposed drugs. Comput Struct Biotechnol J. 2020;18:1043–55. (PMID: 324199057215100)
Swinney DC. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharm Ther. 2013;93:299–301.
Balis FM. Evolution of anticancer drug discovery and the role of cell-based screening. J Natl Cancer Inst. 2002;94:78–9. (PMID: 11792737)
Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov. 2003;2:205–13. (PMID: 12612646)
Howell A, Howell SJ. Tamoxifen evolution. Br J Cancer. 2023;128:421–5. (PMID: 367651729938251)
Quirke VM. Tamoxifen from failed contraceptive pill to best-selling breast cancer medicine: a case-study in pharmaceutical innovation. Front Pharmacol. 2017;12:8.
Pessetto ZY, Weir SJ, Sethi G, Broward MA, Godwin AK. Drug repurposing for gastrointestinal stromal tumor. Mol Cancer Ther. 2013;12:1299–309. (PMID: 236579453707936)
Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:1–9.
Wieder R, Adam N. Drug repositioning for cancer in the era of AI, big omics, and real-world data. Crit Rev Oncol Hematol. 2022;175:103730. (PMID: 35654244)
Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med. 2011;17:3.
Lin WZ, Liu YC, Lee MC, Tang CT, Wu GJ, Chang YT, et al. From GWAS to drug screening: repurposing antipsychotics for glioblastoma. J Transl Med. 2022;20:70. (PMID: 351205298815269)
Baker S, Ali I, Silins I, Pyysalo S, Guo Y, Högberg J, et al. Cancer Hallmarks Analytics Tool (CHAT): a text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics. 2017;33:3973–81. (PMID: 290362715860084)
Detroja TS, Gil-Henn H, Samson AO. Text-mining approach to identify hub genes of cancer metastasis and potential drug repurposing to target them. J Clin Med. 2022;11:2130. (PMID: 354562239029557)
Thorn CF, Klein TE, Altman RB. PharmGKB: the Pharmacogenomics Knowledge Base. Methods Mol Biol. 2013;1015:311–20. (PMID: 238248654084821)
Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science. 2008;321:263–6. (PMID: 18621671)
Yu H, Zhong X, Gao P, Shi J, Wu Z, Guo Z, et al. The potential effect of metformin on cancer: an umbrella review. Front Endocrinol. 2019;18:10.
Suissa S, Azoulay L. Metformin and the risk of cancer. Diabetes Care. 2012;35:2665–73. (PMID: 231731353507580)
Chae YK, Arya A, Malecek MK, Shin DS, Carneiro B, Chandra S, et al. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget. 2016;7:40767–80. (PMID: 270044045130043)
Shaikh N, Linthoi RK, Swamy K v., Karthikeyan M, Vyas R. Comprehensive molecular docking and dynamic simulations for drug repurposing of clinical drugs against multiple cancer kinase targets. J Biomol Struct Dyn. 2022;22:1–9.
Tran AA, Prasad V. Drug repurposing for cancer treatments: a well-intentioned, but misguided strategy. Lancet Oncol. 2020;21:1134–6. (PMID: 32888447)
Day D, Siu LL. Approaches to modernize the combination drug development paradigm. Genome Med. 2016;8:115. (PMID: 277931775084460)
Bahmad HF, Elajami MK, El Zarif T, Bou-Gharios J, Abou-Antoun T, Abou-Kheir W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev. 2020;39:127–48. https://link.springer.com/article/10.1007/s10555-019-09840-2 . (PMID: 31919619)
Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21:1189–95. (PMID: 272407774907866)
Murray CL. Multimodal cancer therapy for breast cancer in the first trimester of pregnancy. JAMA. 1984;252:2607. (PMID: 6092731)
Möttönen T, Hannonen P, Leirisalo-Repo M, Nissilä M, Kautiainen H, Korpela M, et al. Comparison of combination therapy with single-drug therapy in early rheumatoid arthritis: a randomised trial. Lancet. 1999;353:1568–73. (PMID: 10334255)
Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–43. (PMID: 5514969)
Rodrigues R, Duarte D, Vale N. Drug repurposing in cancer therapy: influence of patient’s genetic background in breast cancer treatment. Int J Mol Sci. (2022);1 [cited 2022 Dec 20];23. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028365/ .
Abd. Wahab NA, Lajis NH, Abas F, Othman I, Naidu R. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients. 2020;12:679. (PMID: 321315607146610)
Ogino S, Fuchs CS, Giovannucci E. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev Mol Diagn. 2012;12:621–8. (PMID: 228454823492839)
Santos C, Sanz-Pamplona R, Nadal E, Grasselli J, Pernas S, Dienstmann R, et al. Intrinsic cancer subtypes-next steps into personalized medicine. Cell Oncol. 2015;38:3–16.
Marzagalli M, Fontana F, Raimondi M, Limonta P. Cancer stem cells—key players in tumor relapse. Cancers. 2021;13:376. https://www.mdpi.com/2072-6694/13/3/376 . (PMID: 334985027864187)
Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8:5574–6. (PMID: 313971136745820)
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer metastasis and treatment resistance: mechanistic insights and therapeutic targeting of cancer stem cells and the tumor microenvironment. Biomedicines. 2022;21:10.
Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting multiple signaling pathways in cancer: the rutin therapeutic approach. Cancers. 2020;12:1–34.
Malla RR, Kiran P. Tumor microenvironment pathways: cross regulation in breast cancer metastasis. Genes Dis. 2022;9:310–24. (PMID: 35224148)
Roma-Rodrigues C, Mendes R, Baptista P, Fernandes A. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20:840. (PMID: 307813446413095)
Loscalzo J. Molecular interaction networks and drug development: novel approach to drug target identification and drug repositioning. FASEB J. 2023;5:37.
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F. et al. Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol.2020;235:790–803. https://onlinelibrary.wiley.com/doi/full/10.1002/jcp.29044 . (PMID: 31286518)
Catara G, Colanzi A, Spano D. Combinatorial strategies to target molecular and signaling pathways to disarm cancer stem cells. Front Oncol. (2021);11. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2021.689131 .
Boshuizen J, Peeper DS. Rational cancer treatment combinations: an urgent clinical need. Mol Cell. 2020;78:1002–18. (PMID: 32559422)
Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21:1189. (PMID: 272407774907866)
Sun Y, Li L, Li X, Zhang L, Wang X, Fu X, et al. Outcomes of GDPT (gemcitabine, cisplatin, prednisone, thalidomide) versus CHOP in newly diagnosed peripheral T-cell lymphoma patients. Ther Adv Med Oncol. 2020;12:175883592092382.
Chopra S, Goda JS, Mittal P, Mulani J, Pant S, Pai V, et al. Concurrent chemoradiation and brachytherapy alone or in combination with nelfinavir in locally advanced cervical cancer (NELCER): study protocol for a phase III trial. BMJ Open. 2022;12:e055765. (PMID: 353878198987785)
Pemovska T, Bigenzahn JW, Superti-Furga G. Recent advances in combinatorial drug screening and synergy scoring. Curr Opin Pharmacol. 2018;42:102–10. (PMID: 301931506219891)
Duarte D, Guerreiro I, Vale N. Novel strategies for cancer combat: drug combination using repurposed drugs induces synergistic growth inhibition of MCF-7 breast and HT-29 colon cancer cells. Curr Issues Mol Biol.2022;44:4930–49. https://www.mdpi.com/1467-3045/44/10/335/htm . (PMID: 362860509601176)
Yao CH, Liu GY, Wang R, Moon SH, Gross RW, Patti GJ. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biol. 2018;16:e2003782. (PMID: 295964105892939)
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018;2018:5416923. (PMID: 296819495850899)
Chan MM, Chen R, Fong D. Targeting cancer stem cells with dietary phytochemical - Repositioned drug combinations. Cancer Lett. 2018;433:53–64. (PMID: 299600487117025)
Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, et al. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 2012;17:989–97. (PMID: 224605053413814)
Sachlos E, Risueño RM, Laronde S, Shapovalova Z, Lee JH, Russell J, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012;149:1284–97. (PMID: 22632761)
Song CW, Lee H, Dings RPM, Williams B, Powers J, Santos TD. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep. 2012;2:1–9.
Azar K, Kannappan V, Liu Y, Butcher K, Morris M, Armesilla A, et al. Disulfiram targets glioblastoma-stem-like cells in vitro and in vivo. Neuro Oncol. 2018;20:i20 https://doi.org/10.1093/neuonc/nox238.089 . (PMID: 10.1093/neuonc/nox238.0895791619)
Triscott J, Pambid MR, Dunn SE. Concise review: bullseye: targeting cancer stem cells to improve the treatment of gliomas by repurposing disulfiram. Stem Cells.2015;33:1042–6. https://academic.oup.com/stmcls/article/33/4/1042/6407122 . (PMID: 25588723)
Suzuki S, Yamamoto M, Togashi K, Sanomachi T, Sugai A, Seino S, et al. In vitro and in vivo anti-tumor effects of brexpiprazole, a newly-developed serotonin-dopamine activity modulator with an improved safety profile. Oncotarget. 2019;10:3547–58. (PMID: 311918256544401)
Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. (PMID: 313150346831096)
Piazza GA, Keeton AB, Tinsley HN, Whitt JD, Gary BD, Mathew B, et al. NSAIDs: old drugs reveal new anticancer targets. Pharmaceuticals. 2010;3:1652–67. (PMID: 277133224034002)
Zappavigna S, Cossu AM, Grimaldi A, Bocchetti M, Ferraro GA, Nicoletti GF, et al. Anti-inflammatory drugs as anticancer agents. Int J Mol Sci. 2020;21:2605. (PMID: 322836557177823)
Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 2011;10:655. (PMID: 242504023813081)
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y. et al. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther. 2020;5:1–25. https://www.nature.com/articles/s41392-020-00213-8 .
Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. 2019[cited 2023 May 4];15:397–401. Available from: https://doi.org/10.1080/17460441.2020.1704729 .
Csermely P, Ágoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharm Sci. 2005;26:178–82. (PMID: 15808341)
World Health Organization. World Health Organization. Regional Office for Europe. WHO/EURO:2021-2807-42565-59178. 2021 [cited 2023 May 3]. Repurposing of medicines – the underrated champion of sustainable innovation: policy brief. Available from: https://apps.who.int/iris/handle/10665/342567 .
Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5:1–16. https://www.nature.com/articles/s41392-020-00280-x .
Strauss VY, Shaw R, Virdee PS, Hurt CN, Ward E, Tranter B, et al. Study protocol: a multi-centre randomised study of induction chemotherapy followed by capecitabine ± nelfinavir with high- or standard-dose radiotherapy for locally advanced pancreatic cancer (SCALOP-2). BMC Cancer. 2019;19:121. (PMID: 307177076360784)
Skinner H, Hu C, Tsakiridis T, Santana-Davila R, Lu B, Erasmus JJ, et al. Addition of metformin to concurrent chemoradiation in patients with locally advanced non–small cell lung cancer. JAMA Oncol. 2021;7:1324. (PMID: 34323922)
Halatsch ME, Kast RE, Karpel-Massler G, Mayer B, Zolk O, Schmitz B, et al. A phase Ib/IIa trial of 9 repurposed drugs combined with temozolomide for the treatment of recurrent glioblastoma: CUSP9v3. Neurooncol Adv. 2021;1:3.
O’Rawe M, Wickremesekera AC, Pandey R, Young D, Sim D, FitzJohn T, et al. Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: results of a phase I clinical trial. J Clin Neurosci. 2022;95:48–54. (PMID: 34929651)
Halabi SF. The drug repurposing ecosystem: intellectual property incentives, market exclusivity, and the future of “New” medicines. Yale J Law Technol. (2021);25:20.
Heled Y, Patents V. Statutory exclusivities in biological pharmaceuticals - do we really Need Both? Mich Telecom Tech L Rev. 2012;18:419.
Smith RB. Repositioned drugs: integrating intellectual property and regulatory strategies. Drug Discov Today Ther Strateg. 2011;8:131–7.
Radley DC, Finkelstein SN, Stafford RS. Off-label prescribing among office-based physicians. Arch Intern Med. 2006;166:1021. (PMID: 16682577)
Verbaanderd C, Meheus L, Huys I, Pantziarka P.Repurposing drugs in oncology: next steps.Trends Cancer. 2017;3:543–6. (PMID: 28780930)
Murphy SM, Puwanant A, Griggs RC. Unintended effects of orphan product designation for rare neurological diseases. Ann Neurol. 2012;72:481–90. (PMID: 231091433490440)
Verbaanderd C, Rooman I, Meheus L, Huys I On-Label or Off-Label? Overcoming regulatory and financial barriers to bring repurposed medicines to cancer patients. Front Pharmacol. 2020;31:10.
Mueller-Langer F. Neglected infectious diseases: are push and pull incentive mechanisms suitable for promoting drug development research? Health Econ Policy Law. 2013;8:185–208. (PMID: 233436393592259)
Sahragardjoonegani B, Beall RF, Kesselheim AS, Hollis A. Repurposing existing drugs for new uses: a cohort study of the frequency of FDA-granted new indication exclusivities since 1997. J Pharm Policy Pract. 2021;14:3. (PMID: 333974717780607)
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC Health Serv Res. 2022;22:970. (PMID: 359066879336118)
Lee JJ, Haupt JP. Scientific globalism during a global crisis: research collaboration and open access publications on COVID-19. High Educ. 2021;81:949–66.
Fetro C. Connecting academia and industry for innovative drug repurposing in rare diseases: it is worth a try. Rare Dis Orphan Drugs J. 2023;2:7. https://rdodjournal.com/article/view/5551 .
van den Berg S, de Visser S, Leufkens HGM, Hollak CEM. Drug repurposing for rare diseases: a role for academia. Front Pharmacol. 2021;12:2673.
Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. Drug repurposing for rare diseases. Trends Pharmacol Sci.2021;42:255–67. https://pubmed.ncbi.nlm.nih.gov/33563480/ . (PMID: 33563480)
Tyrer F, Bhaskaran K, Rutherford MJ. Immortal time bias for life-long conditions in retrospective observational studies using electronic health records. BMC Med Res Methodol. 2022;22:86. (PMID: 353509938962148)
DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N. Engl J Med. 1995;333:541–9. (PMID: 7623902)
Hammer GP, du Prel JB, Blettner M. Avoiding bias in observational studies: part 8 in a series of articles on evaluation of scientific publications. Dtsch Arztebl Int. 2009;106:664–8. (PMID: 199464312780010)
Devita VT, Young RC, Canellos GP. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer. 1975;35:98–110. (PMID: 162854)
Michel MC, Staskin D. Study designs for evaluation of combination treatment: focus on individual patient benefit. Biomedicines. 2022;10:270. (PMID: 352034798869609)
Lee SJC, Murphy CC, Geiger AM, Gerber DE, Cox JV, Nair R. Conceptual model for accrual to cancer clinical trials. J Clin Oncol. 2019;37:1993–6. (PMID: 311668226879309)
Rationalizing combination therapies. Nat Med. 2017;23:1113–1113.
Maziarz M, Stencel A. The failure of drug repurposing for COVID-19 as an effect of excessive hypothesis testing and weak mechanistic evidence. Hist Philos Life Sci.2022;44:1–26. https://link.springer.com/article/10.1007/s40656-022-00532-9 .
Nowak-Sliwinska P, Scapozza L, Altaba AR.Drug repurposing in oncology: compounds, pathways, phenotypes and computational approaches for colorectal cancer.Biochim Biophys Acta Rev Cancer. 2019;1871:434–54. (PMID: 310349266528778)
Bluhmki T, Bitzer S, Gindele JA, Schruf E, Kiechle T, Webster M, et al. Development of a miniaturized 96-Transwell air–liquid interface human small airway epithelial model. Sci Rep. 2020;10:13022. (PMID: 327477517400554)
Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 2017;24:1092–100. (PMID: 28757181)
Kesh K, Gupta VK, Durden B, Garrido V, Mateo-Victoriano B, Lavania SP. et al. Therapy resistance, cancer stem cells and ECM in cancer: the matrix reloaded. Cancers. 2020;12:3067. https://www.mdpi.com/2072-6694/12/10/3067/htm . (PMID: 330966627589733)
Keith CT, Borisy AA, Stockwell BR. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov. 2005;4:71–8. (PMID: 15688074)
Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9. (PMID: 25399551)
Brimblecombe R, Duncan W, Durant G, Ganellin C, Parsons M, Black J. The pharmacology of cimetidine, a new histamine H2-receptor antagonist. Br J Pharm. 2010;160:S52–3.
Wallach EE, Adashi EY. Clomiphene citrate: mechanism(s) and site(s) of action—a hypothesis revisited. Fertil Steril. 1984;42:331–44.
Lyne SB, Yamini B. An alternative pipeline for glioblastoma therapeutics: a systematic review of drug repurposing in glioblastoma. Cancers. 2021;13:1953. (PMID: 339195968073966)
Cheng S, Wang G, Wang Y, Cai L, Qian K, Ju L, et al. Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin Sci. 2019;133:1745–58.
Ulrich-Merzenich G, Kelber O, Koptina A, Freischmidt A, Heilmann J, Müller J, et al. Novel neurological and immunological targets for salicylate-based phytopharmaceuticals and for the anti-depressant imipramine. Phytomedicine. 2012;19:930–9. (PMID: 22743246)
Timilsina S, Rajamanickam S, Rao A, Subbarayalu P, Nirzhor S, Abdelfattah N, et al. The antidepressant imipramine inhibits breast cancer growth by targeting estrogen receptor signaling and DNA repair events. Cancer Lett. 2022;540:215717. (PMID: 3556826510313451)
Thanacoody HK, Thioridazine R. The good and the bad. Recent Pat Antiinfect Drug Discov. 2011;6:92–8. (PMID: 21548877)
Balfour JA, Faulds D. Repaglinide. Drugs Aging. 1998;13:173–80. (PMID: 9739505)
el Sharkawi FZ, el Shemy HA, Khaled HM. Possible anticancer activity of rosuvastatine, doxazosin, repaglinide and oxcarbazepin. Asian Pac J Cancer Prev. 2014;15:199–203. (PMID: 24528027)
Vaidya B, Kulkarni NS, Shukla SK, Parvathaneni V, Chauhan G, Damon JK, et al. Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: repurposing quinacrine for lung cancer therapeutics. Int J Pharm. 2020;577:118995. (PMID: 31935471)
Roder C, Thomson MJ. Auranofin: repurposing an old drug for a golden new age. Drugs R D 2015;15:13–20. (PMID: 256985894359176)
Rudin CM, Brahmer JR, Juergens RA, Hann CL, Ettinger DS, Sebree R, et al. Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non–small-cell lung cancer. J Thorac Oncol. 2013;8:619–23. (PMID: 235460453636564)
Pan JX, Ding K, Wang CY. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer. 2012;31:178–84. (PMID: 222370383777479)
Lu C, Li X, Ren Y, Zhang X. Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemother Pharm. 2021;87:159–72.
Tonussi CR, Ferreira SH. Mechanism of diclofenac analgesia: direct blockade of inflammatory sensitization. Eur J Pharm. 1994;251:173–9.
Pantziarka P, Sukhatme V, Bouche G, Melhuis L, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)—diclofenac as an anti-cancer agent. Ecancermedicalsci. 2016;11:10.
Ban TA. Fifty years chlorpromazine: a historical perspective. Neuropsychiatr Dis Treat. 2007;3:495–500. (PMID: 193005782655089)
Matteoni S, Matarrese P, Ascione B, Ricci-Vitiani L, Pallini R, Villani V, et al. Chlorpromazine induces cytotoxic autophagy in glioblastoma cells via endoplasmic reticulum stress and unfolded protein response. J Exp Clin Cancer Res. 2021;40:347. (PMID: 347403748569984)
Davignon J, Xhignesse M, Mailloux H, Frohlich J, Hayden ML, Vaneeta H, Mishkel MA, McQueen MJ, Tan MH, Wolfe B, Nikkila E, Tikkanen MJ, Ojaja JP, Helve E, Dujovne CA, Horniman S, Goldberg I, Ginsberg H, Goldberg R, Farkas R. et al. Lovastatin 5-year safety and efficacy study. Arch Intern Med. 1993;153:1079–87.
Bouterfa HL, Sattelmeyer V, Czub S. Inhibition of Ras farnesylation by lovastatin leads to downregulation of proliferation and migration in primary cultured human glioblastoma cells. Anticancer Res. 2000;20:2761–71. (PMID: 10953355)
Zheng C, Yan S, Lu L, Yao H, He G, Chen S, et al. Lovastatin Inhibits EMT and Metastasis of Triple-Negative Breast Cancer Stem Cells Through Dysregulation of Cytoskeleton-Associated Proteins. Front Oncol. 2021;11:656687. (PMID: 341506238212055)
Briceño E, Reyes S, Sotelo J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg Focus. 2003;14:1–6.
Kaldor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, et al. Viracept (Nelfinavir Mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem. 1997;40:3979–85. (PMID: 9397180)
Zhou H S, Beevers C, Huang S. The targets of curcumin. Curr Drug Targets. 2011;12:332–47. (PMID: 209551483025067)
Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm. 2010;343:489–99.
Gilbert Elizabeth R, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct. 2013;4:200–12. (PMID: 231601853678366)
Barnes S, Peterson TG, Coward L. Rationale for the use of genistein-containing soy matrices in chemoprevention trials for breast and prostate cancer. J Cell Biochem. 1995;59:181–7.
Chen YX, Gao QY, Zou TH, Wang BM, Liu SD, Sheng JQ, et al. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: a multicentre, double-blinded, randomised controlled study. Lancet Gastroenterol Hepatol. 2020;5:267–75. (PMID: 31926918)
Nygren P, Larsson R. Drug repositioning from bench to bedside: tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol. 2014;53:427–8. (PMID: 24160353)
Li P, Wu H, Zhang H, Shi Y, Xu J, Ye Y, et al. Aspirin use after diagnosis but not prediagnosis improves established colorectal cancer survival: a meta-analysis. Gut. 2015;64:1419–25. (PMID: 25239119)
Lewis PJ, Haeusler G. Reduction in sympathetic nervous activity as a mechanism for hypotensive effect of propranolol. Nature. 1975;256:440–440. (PMID: 1143350)
Fjæstad KY, Rømer AMA, Goitea V, Johansen AZ, Thorseth ML, Carretta M, et al. Blockade of beta-adrenergic receptors reduces cancer growth and enhances the response to anti-CTLA4 therapy by modulating the tumor microenvironment. Oncogene. 2022;41:1364–75. (PMID: 350176648881216)
Colafigli M, Ciccullo A, Borghetti A, Fanti I, Melis F, Modica S, et al. Impact of antiretroviral therapy on the risk of recurrence in HIV-1 infected patients with kaposi sarcoma: a multicenter cohort experience. J Clin Med. 2019;8:2062. (PMID: 317711726947508)
Figg WD, Hussain MH, Gulley JL, Arlen PM, Aragon-Ching JB, Petrylak DP, et al. A double-blind randomized crossover study of oral thalidomide versus placebo for androgen dependent prostate cancer treated with intermittent androgen ablation. J Urol. 2009;181:1104–13. (PMID: 191677332838198)
Tonkens R. An overview of the drug development process. Physician Exec. 2005;31:48–52. (PMID: 16224908)
المشرفين على المادة: 0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20231127 Date Completed: 20240306 Latest Revision: 20240308
رمز التحديث: 20240309
مُعرف محوري في PubMed: PMC10912636
DOI: 10.1038/s41416-023-02502-9
PMID: 38012383
قاعدة البيانات: MEDLINE