دورية أكاديمية

Morphology of the wings and attachment apparatus in the evolution of the family Hippoboscidae (Diptera).

التفاصيل البيبلوغرافية
العنوان: Morphology of the wings and attachment apparatus in the evolution of the family Hippoboscidae (Diptera).
المؤلفون: Yatsuk AA; A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia., Triseleva TA; A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia., Narchuk EP; Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia., Matyukhin AV; A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia., Safonkin AF; A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia.
المصدر: Integrative zoology [Integr Zool] 2024 Sep; Vol. 19 (5), pp. 941-954. Date of Electronic Publication: 2023 Nov 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Publishing Asia Pty Ltd Country of Publication: Australia NLM ID: 101492420 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-4877 (Electronic) Linking ISSN: 17494869 NLM ISO Abbreviation: Integr Zool Subsets: MEDLINE
أسماء مطبوعة: Publication: 2012-: Richmond, Vic., Australia : Wiley Publishing Asia Pty Ltd
Original Publication: 2006-2012: [Oxford, England] : Blackwell Publishing
مواضيع طبية MeSH: Wings, Animal*/anatomy & histology , Diptera*/anatomy & histology , Diptera*/classification , Diptera*/physiology , Phylogeny* , Biological Evolution*, Animals ; Birds/anatomy & histology ; Birds/classification ; Birds/parasitology
مستخلص: Using a complex analysis of the molecular genetics, morphological, and ecological characteristics of Hippoboscidae flies, the phylogenetic structure and trends in the evolution of morphological characters that contribute to the ectoparasitic lifestyle of hippoboscid flies of the north of Eurasia were studied for the first time. The research was carried out on 26 Palearctic species from 10 genera. The analysis of molecular phylogeny revealed the levels of clustering of the family with the species predominantly parasitizing mammals or birds, the time of cluster formation, and the divergence of species in the Palearctic conditions. An independent adaptation to birds occurred in the genera Icosta, Pseudolynchia, Ornithoica, and others. Bird parasites are characterized by bifid tarsal claws, long hooks on pulvilli, and long empodium setae (except genus Ornithoica). Mammalian parasites are characterized by simple tarsal claws, short lobes of hooks on pulvilli, and zones on empodium with short setae. Specialization in empodium and pulvillus morphotypes and wing reduction are higher diverged in mammalian parasites than in bird parasites. The decrease of flight ability and wing reduction independently arose in different subfamilies of Hippoboscidae flies. Our results assume that the tribe Ornithomyini is a paraphyletic group, since, according to the complex of morphological features, the genus Ornithoica can be considered a separate lineage of evolution.
(© 2023 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.)
References: Andersen NM (1997). Phylogenetic tests of evolutionary scenarios: The evolution of flightlessness and wing polymorphism in insects. Memoires du Museum National d'Histoire Naturelle 173, 91–108.
Andreani AA, Sacchetti P, Belcari A (2020). Evolutionary adaptations in four hippoboscid fly species belonging to three different subfamilies. Medical and Veterinary Entomology 34, 344–363.
Ballard JW (2004). Sequential evolution of a symbiont inferred from the host: Wolbachia and Drosophila simulans. Molecular Biology and Evolution 21, 428–442.
Bazsalovicsová EČ, Víchová B, Oboňa J et al. (2023). Bird louse flies Ornithomya spp. (Diptera: Hippoboscidae) as potential vectors of mammalian babesia and other pathogens. Vector‐Borne and Zoonotic Diseases 23, 275–283.
Bequaert JC (1954). The Hippoboscidae or louse‐flies (Diptera) of mammals and birds. 2. Taxonomy, evolution and revision of America genera and species. Entomologica Americana 34, 1–232.
Blair JE, Hedges SB (2005). Molecular phylogeny and divergence times of deuterostome animals. Molecular Biology and Evolution 22, 2275–2284.
Bouckaert R, Heled J, Kuhnert D et al. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
Buss M, Case L, Kearney B et al. (2016), Detection of Lyme disease and anaplasmosis pathogens via PCR in Pennsylvania deer ked. Journal of Vector Ecology 41, 292–294.
Büttiker W (1944). Die Parasiten und Nestgäste des Mauerseglers (Micropus apus L.). Der Ornithologische Beobachter 41, 25–35. (In German.).
da Silva, ThMV, Graciolli G, De Santi M et al. (2021). Occurrence of the louse fly Ornithoctona erythrocephala Leach (1817) (Diptera: Hippoboscidae) on a free‐living red‐legged seriema (Cariama cristata). Revista Brasileira de Parasitologia Veterinária 30, e025520.
de Moya RS (2019). Implications of a Dating Analysis of Hippoboscoidea (Diptera) for the origins of phoresis in feather lice (Psocodea: Phthiraptera: Philopteridae). Insect Systematics and Diversity 3, 1–5.
Dick CW (2006). Checklist of World Hippoboscidae (Diptera: Hippoboscoidea). Field Museum of Natural History, Chicago.
Doszhanov TN (1980). Mukhi‐krovososki (Diptera, Hippoboscidae) Kazakhstana [Louse flies (Diptera, Hippoboscidae) in Kazakhstan]. Nauka KazSSR, Alma‐Ata. (In Russian.).
Doszhanov TN (2003). Mukhi‐krovososki (Diptera, Hippoboscidae) Palearktiki [Louse flies (Diptera, Hippoboscidae) of the Palearctic region]. Nauka, Alma‐Ata. (In Russian.).
Dubinin VB (1953). Feather mites (Analgesoidea). Part II. Families Epidermoptidae and Freyanidae. In: Pavlovskij GN, ed. Fauna of the USSR, Arachnids, 6. Nauka, Moscow, Leningrad. (In Russian.).
Eichler W (1939). Deutsche Lausfliegen, ihre Lebensweise und ihre hygienische Bedeutung. Zeitschrift für hygienische Zoologie und Schädlingsbekämpfung 31, 210–226. (In German.).
Fain A (1965). A review of the family Epidermoptidae Trouessart parasitic on the skin of birds (Acarina: Sarcoptiformes). Verhandelingen van de Koninklijke Vlaamse Academie voor Wetenschppen, Letteren en Schone Kunsten van Bergie 84, 1–176 (part I), 1–144 (part II).
Farajollahi A, Crans VJ, Nickerson D et al. (2005) Detection of West Nile virus RNA from the louse fly Icosta americana (Diptera: Hippoboscidae). Journal of the American Mosquito Control Association 21, 474.
Folmer O, Black M, Hoeh W et al. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
Ganez AY, Baker IK, Lindsay R et al. (2002). West Nile virus outbreak in North American owls, Ontario. Emerging infectious Diseases 10, 2135–2142.
Gavrilyuk MN ed (2012). Predatory birds in the dynamic environment of the Third Millennium: State and prospects. Proceedings of the VI International Conference on Falcons and Owls of Northern Eurasia; 27–30 Sep 2012, Krivoy Rog, Russia. FL‐P Chernyavskiy D.A., Krivoy Rog. (In Russian.).
Gilardi KV, Gilardi JD, Frank A et al. (2001). Epidermoptid mange in Laysan albatross fledglings in Hawaii. Journal of Wildlife Diseases 37, 185–188.
Gutierrez‐Lopez R, Martinez‐de la Puente J, Gangoso L et al. (2015). Comparison of manual and semi‐automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae). Journal of Vector Ecology 40, 11–15.
Hayer S, Sturm BP, Büsse S et al. (2022). Louse flies holding on mammals' hair: Comparative functional morphology of specialized attachment devices of ectoparasites (Diptera: Hippoboscoidea). Journal of Morphology 283, 1561–1576.
Hennig W (1965). Die Acalyptratae des Baltischen Bernsteins und ihre Bedeutung für die Erforschung der phylogenetischen Entwicklung dieser Dipteren‐Gruppe. Stuttgarter Beiträge zur Naturkunde 145, 1–215. (In German.).
Hennig W (1973). Ordnung Diptera (Zweiflügler). Handbuch der Zoologie 4, 1–227. (In German.).
Hill DS, Wilson N, Corbet GB (1967). Mites associated with British species of Ornithomya (Diptera: Hippoboscidae). Journal of Medical Entomology 4, 102–122.
Hutson AM (1984). Hippoboscidae and Nycteribiidae (Keds, Flat‐Flies and Bat‐Flies). Diptera – Handbooks for the Identification of British Insects, vol. 10. Royal Entomological Society of London, London.
Kemper H (1951). Beobachtungen an Crataerina pallida Latr. und Melophagus ovinus L. (Diptera, Pupipara). Zeitschrift für Hygiene (Zoologie) 39, 225–259. (In German.).
Khametova AP, Pichurina NL, Zabashta MV et al. (2018). Biocenotic structure of natural focus of borreliosis in the Rostov region. Medical Parasitology and Parasitic Diseases 4, 33–39. (In Russian.).
Krzeminski W (1992). Triassic and Lower Jurassic stage of Diptera evolution. Mitteilungen der schweizerischen entomologischen Gesellschaft 65, 39–59.
Lee L, Tan DJ, Oboňa J et al. (2022). Hitchhiking into the future on a fly: Toward a better understanding of phoresy and avian louse evolution (Phthiraptera) by screening bird carcasses for phoretic lice on hippoboscid flies (Diptera). Systematic Entomology 47, 420–429.
Lee S‐H, Kim K‐T, Kwon O‐D et al. (2016). Novel Detection of Coxiella spp., Theileria luwenshuni, and T. ovis endosymbionts in deer keds (Lipoptena fortisetosa). PLoS ONE 11, e0156727.
Lehikoinen A, Pohjola P, Valkama J et al. (2021). Promiscuous specialists: Host specificity patterns among generalist louse flies. PLoS ONE 16, e0247698.
Levesque‐Beaudin V, Sinclair BJ (2021). Louse fly (Diptera, Hippoboscidae) associations with raptors in southern Canada, with new North American and European records. International Journal for Parasitology: Parasites and Wildlife 16, 168–174.
Liu S‐P, Friedrich F, Petersen DS et al. (2019). The thoracic anatomy of the swift lousefly Crataerina pallida (Diptera) – functional implications and character evolution in Hippoboscoidea. Zoological Journal of the Linnean Society 185, 111–131.
Liu ZQ, Nuer K, Wang GL et al. (2017). The complete mitochondrial genome of the parasitic sheep ked Melophagus ovinus (Diptera: Hippoboscidae). Mitochondrial DNA Part B: Resources 2, 432–434.
Llopart A, Herrig D, Brud E, Stecklein Z (2014). Sequential adaptive introgression of the mitochondrial genome in Drosophila yakuba and Drosophila santomea. Molecular Ecology 23, 1124–1136.
Maa TC (1965). A synopsis of the Lipopteninae (Diptera, Hippoboscidae). Journal of Medical Entomology 2, 233–248.
Maa TC (1966a). Studies in Hippoboscidae (Diptera). On the genus Pseudolynchia Bequaert (Diptera: Nycteribiidae). Pacific Insects Monograph 10, 125–138.
Maa TC (1966b). The genus Ornithoica Rondani (Diptera: Hippoboscidae). Pacific Insects Monograph 10, 10–124.
Maa TC (1969a). Studies in Hippoboscidae (Diptera). Part 2. Synopses of the genera Ornithophila and Ornithoctona with remarks on their habitat diversification (Diptera: Hippoboscidae). Pacific Insects Monograph 20, 1–23.
Maa TC (1969b). Revision of Icosta ( = Lynchia Auctt.) with erection of a related genus Phthona (Diptera: Hippoboscidae). Pacific Insects Monograph 20, 25–203.
Maa TC (1969c). Studies in Hippoboscidae (Diptera). Part 2. Notes on the Hippoboscidae II (Diptera). Pacific Insects Monograph 20, 237–260.
Maa TC (1969d). A revised checklist and concise host index of Hippoboscidae (Diptera). Pacific Insects Monograph 20, 261–299.
Maa TC, Peterson BV (1987). Hippoboscidae. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM, eds. Manual of Nearctic Diptera, vol. 2. Research Branch, Agriculture Canada, Ottawa, pp. 1271–1281.
Marinho MA, Junqueira AC, Paulo DF et al. (2012). Molecular phylogenetics of Oestroidea (Diptera: Calyptratae) with emphasis on Calliphoridae: Insights into the inter‐familial relationships and additional evidence for paraphyly among blowflies. Molecular Phylogenetics and Evolution 65, 840–854.
Matyukhin AV, Artemiev AV, Panov IN (2017). Parasitological studies of birds: Louse‐flies (Diptera: Hippoboscidae) in Karelia. Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences. Biogeography Series 7, 34–37. (In Russian.).
Michelsen V (2000). Oldest authentic record of a fossil calyptrate fly (Diptera): A species of Anthomyiidae from early Coenozoic Baltic amber. Studia Dipterologica 7, 11–18.
Mihalca AD, Pastrav IR, Sandor AD et al. (2019). First report of the dog louse fly Hippobosca longipennis in Romania. Medical and Veterinary Entomology 33, 530–535.
Misof B, Liu S, Meusemann K et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767.
Nartshuk EP, Matyukhin AV, Shokhrin VP et al. (2020). Louse flies (Diptera, Hippoboscidae) on the Courish Spit (Kaliningrad Province, Russia). Entomological Review 100, 231–238.
Nartshuk EP, Matyukhin AV, Shokhrin VP, Markovets MYu (2019). New records of ornithophilous louse‐flies (Diptera: Hippoboscidae: Ornithomyinae) from the Russian Far East. Far Eastern Entomologist 384, 15–20.
Oboňa J, Krišovský P, Hromada M (2019). Short‐term faunistic sampling of Louse flies (Diptera: Hippoboscidae) from Drienovec Bird Ringing Station, Slovakia. Biodiversity & Environment 11, 4–9.
O'Leary MA, Bloch JI, Flynn JJ et al. (2013). The placental mammal ancestor and the post–K‐Pg radiation of placentals. Science 339, 662–667.
Petersen DS, Kreuter N, Heepe L et al. (2018). Holding tight to feathers—Structural specializations and attachment properties of the avian ectoparasite Crataerina pallida (Diptera, Hippoboscidae). Journal of Experimental Biology 221, jeb179242.
Petersen FT, Meier R, Kutty SN, Wiegmann BM (2007). The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Molecular Phylogenetics and Evolution 45, 111–122.
Philips JR, Fain A (1991). Acarine symbionts louse flies (Diptera: Hippoboscidae). Acarologia 32, 377.
Prum RO, Berv JS, Dornburg A et al. (2015). A comprehensive phylogeny of birds (Aves) using targeted next‐generation DNA sequencing. Nature 526, 569–573.
Ratzlaff CG (2017). The Hippoboscoidea of British Columbia. Spencer Entomological Collection, Beaty Biodiversity Museum, UBC, Vancouver.
Rodendorf BB (1964). Istoricheskoye razvitiye dvukrylykh nasekomykh. Trudy paleontologicheskogo instituta (Historical development of Diptera. Proceedings of the Paleontological Institute); Nauka, Moscow. (In Russian.).
Salvetti M, Bianchi A, Marangi M et al. (2020). Deer keds on wild ungulates in northern Italy, with a taxonomic key for the identification of Lipoptena spp. of Europe. Medical and Veterinary Entomology 34, 74–85.
Sochova E, Husnik F, Novakova E et al. (2017). Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 5, e4099.
Soós A, Hůrka K (1986). Family Hippoboscidae. In: Catalogue of Palaearctic Diptera. Scatophagidae – Hypodermatidae, vol. 11. Akadémiai Kiadó, Budapest, pp. 215–226.
Tamura K, Stecher G, Kumar S (2021). MEGA11: Molecular evolutionary genetics analysis. Version 11. Molecular Biology and Evolution 38, 3022–3027.
Tamura K, Subramanian S, Kumar S (2004). Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Molecular Biology and Evolution 21, 36–44.
Tiawsirisup S, Yurayart N, Thongmeesee K et al. (2023). Possible role of Lipoptena fortisetosa (Diptera: Hippoboscidae) as a potential vector for Theileria spp. in captive Eld's deer in Khao Kheow open zoo, Thailand. Acta Tropica 237, 106737.
Trilar T, Kremar S (2005). Contribution to the knowledge of louse flies of Croatia (Diptera: Hippoboscidae). Natura Croatica 14, 131–140.
Votypka J, Radrova J, Skalicky T et al. (2015). A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. The International Journal for Parasitology 45, 741–748.
Wang X, Zhou R, Lu L, Wang C, Liu Q (2022). A New Record of Ornithoica aequisenta and an updated checklist of Hippoboscidae, Nycteribiidae, and Streblidae in China. Journal of Medical Entomology 59, 1071–1075.
Werszko J, Steiner‐Bogdaszewska Ż, Jeżewski W et al. (2020). Molecular detection of Trypanosoma spp. in Lipoptena cervi and Lipoptena fortisetosa (Diptera: Hippoboscidae) and their potential role in the transmission of pathogens. Parasitology 147, 1629–1635.
Yatsuk AA, Safonkin AF, Matyukhin AV, Triseleva TA (2022). Pulvillae hooks attachment specificity of the family Hippoboscidae representatives to the bird‐hosts down feathers. Journal of General Biology 83, 202–207. (In Russian with English abstract.).
Yatsuk AA, Safonkin AF, Matyukhin AV, Triseleva TA (2023). The morphotypes of louse flies (Diptera, Hippoboscidae) based on the morphology of pulvillae and empodia in the context of host range. Biology Bulletin Reviews 13, 28–37.
Yule GU (1925). A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Phylosophical Transactions of the Royal Society. B. Biological Sciences 213, 21–87.
Zabashta MV, Pichurina NL, Matyukhin AV et al. (2017). Epizootologicheskoye znacheniye massovykh vidov mukh‐krovososok (Diptera: Hippoboscidae) Zapadnogo Predkavkaz'ya [The epizootological significance of the mass types of louse flies (Diptera: Hippoboscidae) of the Western Ciscaucasia]. 15th Congress of the Russian Entomological Society; 31 Jul–7 Aug 2017, Novosibirsk, Russia. Garamond, Novosibirsk. (In Russian.).
فهرسة مساهمة: Keywords: evolution; hippoboscid flies; molecular phylogeny; morphology; physiological adaptations
تواريخ الأحداث: Date Created: 20231201 Date Completed: 20240827 Latest Revision: 20240827
رمز التحديث: 20240827
DOI: 10.1111/1749-4877.12786
PMID: 38037136
قاعدة البيانات: MEDLINE
الوصف
تدمد:1749-4877
DOI:10.1111/1749-4877.12786