دورية أكاديمية

MicroRNA-299-3p inhibits cell proliferation, motility, invasion and angiogenesis via VEGFA in upper tract urothelial carcinoma.

التفاصيل البيبلوغرافية
العنوان: MicroRNA-299-3p inhibits cell proliferation, motility, invasion and angiogenesis via VEGFA in upper tract urothelial carcinoma.
المؤلفون: Wang CS; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan., Lee YC; Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan., Jhan JH; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.; Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan., Li WM; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.; Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan.; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan., Chang LL; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.; Department of Microbiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan., Huang AM; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.; Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan., Lin HH; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan., Wu YR; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan., Hsu WC; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan., Ke HL; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.
المصدر: The journal of gene medicine [J Gene Med] 2024 Jan; Vol. 26 (1), pp. e3616. Date of Electronic Publication: 2023 Dec 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: England NLM ID: 9815764 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-2254 (Electronic) Linking ISSN: 1099498X NLM ISO Abbreviation: J Gene Med Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, UK : John Wiley & Sons,
مواضيع طبية MeSH: Carcinoma, Transitional Cell*/genetics , MicroRNAs*/genetics , Urinary Bladder Neoplasms*/genetics, Humans ; Angiogenesis ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Gene Expression Regulation, Neoplastic ; Vascular Endothelial Growth Factor A/genetics ; Vascular Endothelial Growth Factor A/metabolism
مستخلص: Background: Upper tract urothelial carcinoma (UTUC) is a rare tumor with extraordinarily different features between Eastern and Western countries. Vascular endothelial growth factor-A (VEGFA) was originally identified as a secreted signaling protein and regulator of vascular development and cancer progression. In this study, we aimed to elucidate the molecular mechanisms underlying the regulation of VEGFA by microRNA in UTUC.
Methods: VEGFA expression was evaluated by immunohistochemistry in 140 human UTUC tissue samples. Next, we assessed the regulatory relationship between VEGFA and miR-299-3p by real-time PCR, western blotting, ELISA and dual-luciferase reporter assays using two UTUC cell lines. The role of miR-299-3p/VEGFA in cell proliferation, motility, invasion, and tube formation was analyzed in vitro.
Results: High VEGFA expression was significantly associated with tumor stage, grade, distant metastasis and cancer-related death and correlated with poor progression-free and cancer-specific survival. VEGFA knockdown repressed proliferation, migration, invasion and angiogenesis in UTUC cell lines. miR-299-3p significantly reduced VEGFA protein expression and miR-299-3p overexpression inhibited VEGFA mRNA and protein expression by directly targeting its 3'-UTR. Functional studies indicated that VEGFA overexpression reversed the miR-299-3p-mediated suppression of tumor cell proliferation, migration, invasion and angiogenesis. In addition, miR-299-3p/VEGFA suppressed cellular functions in UTUC by modulating the expression of P18 and cyclin E2.
Conclusions: Our findings suggest that miR-299-3p possibly suppresses UTUC cell proliferation, motility, invasion and angiogenesis via VEGFA. VEGFA may act as a prognostic predictor, and both VEGFA and miR-299-3p could be potential therapeutic targets for UTUC.
(© 2023 John Wiley & Sons Ltd.)
References: Green DA, Rink M, Xylinas E, et al. Urothelial carcinoma of the bladder and the upper tract: disparate twins. J Urol. 2013;189(4):1214-1221. doi:10.1016/j.juro.2012.05.079.
Chen CH, Dickman KG, Moriya M, et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci U S a. 2012;109(21):8241-8246. doi:10.1073/pnas.1119920109.
Yeh HC, Margulis V, Singla N, et al. PTRF independently predicts progression and survival in multiracial upper tract urothelial carcinoma following radical nephroureterectomy. Urol Oncol. 2020;38(5):496-505. doi:10.1016/j.urolonc.2019.11.010.
Liu HY, Chen YT, Huang SC, et al. The prognostic impact of tumor architecture for upper urinary tract urothelial carcinoma: a propensity score-weighted analysis. Front Oncol. 2021;11:613696. doi:10.3389/fonc.2021.613696.
Chen CY, Liao YM, Tsai WM, Kuo HC. Upper urinary tract urothelial carcinoma in eastern Taiwan: high proportion among all urothelial carcinomas and correlation with chronic kidney disease. J Formos Med Assoc. 2007;106(12):992-998. doi:10.1016/S0929-6646(08)60074-1.
Lughezzani G, Jeldres C, Isbarn H, et al. Nephroureterectomy and segmental ureterectomy in the treatment of invasive upper tract urothelial carcinoma: a population-based study of 2299 patients. Eur J Cancer. 2009;45(18):3291-3297. doi:10.1016/j.ejca.2009.06.016.
Colin P, Ouzzane A, Pignot G, et al. Comparison of oncological outcomes after segmental ureterectomy or radical nephroureterectomy in urothelial carcinomas of the upper urinary tract: results from a large French multicentre study. BJU Int. 2012;110(8):1134-1141. doi:10.1111/j.1464-410X.2012.10960.x.
Villa L, Cloutier J, Letendre J, et al. Early repeated ureteroscopy within 6-8 weeks after a primary endoscopic treatment in patients with upper tract urothelial cell carcinoma: preliminary findings. World J Urol. 2016;34(9):1201-1206. doi:10.1007/s00345-015-1753-7.
Li WM, Shen JT, Li CC, et al. Oncologic outcomes following three different approaches to the distal ureter and bladder cuff in nephroureterectomy for primary upper urinary tract urothelial carcinoma. Eur Urol. 2010;57(6):963-969. doi:10.1016/j.eururo.2009.12.032.
Xylinas E, Rink M, Margulis V, Karakiewicz P, Novara G, Shariat SF. Multifocal carcinoma in situ of the upper tract is associated with high risk of bladder cancer recurrence. Eur Urol. 2012;61(5):1069-1070. doi:10.1016/j.eururo.2012.02.042.
Gandaglia G, Bianchi M, Trinh QD, et al. Survival after nephroureterectomy for upper tract urothelial carcinoma: a population-based competing-risks analysis. Int J Urol. 2014;21(3):249-256. doi:10.1111/iju.12267.
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259-269. doi:10.1038/nrc1840.
Wei J, Jones J, Kang J, et al. RNA-induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice. Mol Pharmacol. 2011;79(6):953-963. doi:10.1124/mol.110.070409.
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855-862. doi:10.1016/0092-8674(93)90530-4.
Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350-355. doi:10.1038/nature02871.
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1(1):15004. doi:10.1038/sigtrans.2015.4.
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857-866. doi:10.1038/nrc1997.
Li X, Shi Y, Yin Z, Xue X, Zhou B. An eight-miRNA signature as a potential biomarker for predicting survival in lung adenocarcinoma. J Transl Med. 2014;12(1):159. doi:10.1186/1479-5876-12-159.
Jin K, Luo G, Xiao Z, et al. Noncoding RNAs as potential biomarkers to predict the outcome in pancreatic cancer. Drug des Devel Ther. 2015;9:1247-1255. doi:10.2147/DDDT.S77597.
Shi H, Chen J, Li Y, et al. Identification of a six microRNA signature as a novel potential prognostic biomarker in patients with head and neck squamous cell carcinoma. Oncotarget. 2016;7(16):21579-21590. doi:10.18632/oncotarget.7781.
Jhan JH, Hsu WC, Lee YC, et al. MicroRNA-375-3p suppresses upper tract urothelial carcinoma cell migration and invasion via targeting Derlin-1. Cancers (Basel). 2022;14(4):880. doi:10.3390/cancers14040880.
Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell. 1999;10(4):907-919. doi:10.1091/mbc.10.4.907.
Cui W, Li F, Yuan Q, Chen G, Chen C, Yu B. Role of VEGFA gene polymorphisms in colorectal cancer patients who treated with bevacizumab. Oncotarget. 2017;8(62):105472-105478. doi:10.18632/oncotarget.22295.
Zhang Q, Lu S, Li T, et al. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 2019;38(1):173. doi:10.1186/s13046-019-1156-5.
Dziobek K, Opławski M, Grabarek BO, et al. Changes in the expression profile of VEGF-A, VEGF-B, VEGFR-1, VEGFR-2 in different grades of endometrial cancer. Curr Pharm Biotechnol. 2019;20(11):955-963. doi:10.2174/1389201020666190717092448.
Guan JH, Cao ZY, Guan B, et al. Effect of Babao Dan on angiogenesis of gastric cancer in vitro by regulating VEGFA/VEGFR2 signaling pathway. Transl Cancer Res. 2021;10(2):953-965. doi:10.21037/tcr-20-2559.
Zhu J, Wang L, Liu F, et al. Targeting PELP1 attenuates angiogenesis and enhances chemotherapy efficiency in colorectal cancer. Cancers (Basel). 2022;14(2):383. doi:10.3390/cancers14020383.
Guo XY, Liu TT, Zhu WJ, et al. CircKDM4B suppresses breast cancer progression via the miR-675/NEDD4L axis. Oncogene. 2022;41(13):1895-1906. doi:10.1038/s41388-022-02232-x.
Zhang Y, Hu K, Qu Z, Xie Z, Tian F. ADAMTS8 inhibited lung cancer progression through suppressing VEGFA. Biochem Biophys Res Commun. 2022;598:1-8. doi:10.1016/j.bbrc.2022.01.110.
O'Brien TS, Harris AL. Angiogenesis in urological malignancy. Br J Urol. 1995;76(6):675-682. doi:10.1111/j.1464-410X.1995.tb00755.x.
Campbell SC, Volpert OV, Ivanovich M, Bouck NP. Molecular mediators of angiogenesis in bladder cancer. Cancer Res. 1998;58(6):1298-1304.
Crew JP, O'Brien T, Bicknell R, Fuggle S, Cranston D, Harris AL. Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates. J Urol. 1999;161(3):799-804. doi:10.1016/S0022-5347(01)61772-5.
Zaravinos A, Volanis D, Lambrou GI, Delakas D, Spandidos DA. Role of the angiogenic components, VEGFA, FGF2, OPN and RHOC, in urothelial cell carcinoma of the urinary bladder. Oncol Rep. 2012;28(4):1159-1166. doi:10.3892/or.2012.1948.
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650-1667. doi:10.1038/nprot.2016.095.
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284-287. doi:10.1089/omi.2011.0118.
Raman JD, Messer J, Sielatycki JA, Hollenbeak CS. Incidence and survival of patients with carcinoma of the ureter and renal pelvis in the USA, 1973-2005. BJU Int. 2011;107(7):1059-1064. doi:10.1111/j.1464-410X.2010.09675.x.
AACR Project GENIE. Powering precision medicine through an international consortium. Cancer Discov. 2017;7(8):818-831. doi:10.1158/2159-8290.CD-17-0151.
Liu L, Ma XL, Xiao ZL, Li M, Cheng SH, Wei YQ. Prognostic value of vascular endothelial growth factor expression in resected gastric cancer. Asian Pac J Cancer Prev. 2012;13(7):3089-3097. doi:10.7314/APJCP.2012.13.7.3089.
Kjaer-Frifeldt S, Fredslund R, Lindebjerg J, Hansen TF, Spindler KL, Jakobsen A. Prognostic importance of VEGF-A haplotype combinations in a stage II colon cancer population. Pharmacogenomics. 2012;13(7):763-770. doi:10.2217/pgs.12.38.
Schneider BP, Gray RJ, Radovich M, et al. Prognostic and predictive value of tumor vascular endothelial growth factor gene amplification in metastatic breast cancer treated with paclitaxel with and without bevacizumab; results from ECOG 2100 trial. Clin Cancer Res. 2013;19(5):1281-1289. doi:10.1158/1078-0432.CCR-12-3029.
Qin S, Yi M, Jiao D, Li A, Wu K. Distinct roles of VEGFA and ANGPT2 in lung adenocarcinoma and squamous cell carcinoma. J Cancer. 2020;11(1):153-167. doi:10.7150/jca.34693.
Sankhwar M, Sankhwar SN, Abhishek A, Rajender S. Clinical significance of the VEGF level in urinary bladder carcinoma. Cancer Biomark. 2015;15(4):349-355. doi:10.3233/CBM-150478.
Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost. 2005;3(8):1835-1842. doi:10.1111/j.1538-7836.2005.01361.x.
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249-257. doi:10.1038/35025220.
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298-307. doi:10.1038/nature10144.
Won MS, Im N, Park S, et al. A novel benzimidazole analogue inhibits the hypoxia-inducible factor (HIF)-1 pathway. Biochem Biophys Res Commun. 2009;385(1):16-21. doi:10.1016/j.bbrc.2009.05.022.
Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579-591. doi:10.1038/nrc2403.
Li G, Li X, Yuan C, et al. Long non-coding RNA JPX contributes to tumorigenesis by regulating miR-5195-3p/VEGFA in non-small cell lung cancer. Cancer Manag Res. 2021;13:1477-1489. doi:10.2147/CMAR.S255317.
Ren S, Tan X, Fu MZ, et al. Downregulation of miR-375 contributes to ERBB2-mediated VEGFA overexpression in esophageal cancer. J Cancer. 2021;12(23):7138-7146. doi:10.7150/jca.63836.
Song Y, Zeng S, Zheng G, et al. FOXO3a-driven miRNA signatures suppresses VEGF-A/NRP1 signaling and breast cancer metastasis. Oncogene. 2021;40(4):777-790. doi:10.1038/s41388-020-01562-y.
Frezzetti D, Gallo M, Roma C, et al. Vascular endothelial growth factor a regulates the secretion of different angiogenic factors in lung cancer cells. J Cell Physiol. 2016;231(7):1514-1521. doi:10.1002/jcp.25243.
Zeng FC, Zeng MQ, Huang L, et al. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma. Onco Targets Ther. 2016;9:2131-2141. doi:10.2147/OTT.S98002.
Cai H, Liu X, Zheng J, et al. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma. Oncogene. 2017;36(3):318-331. doi:10.1038/onc.2016.212.
Wang JY, Jiang JB, Li Y, Wang YL, Dai Y. MicroRNA-299-3p suppresses proliferation and invasion by targeting VEGFA in human colon carcinoma. Biomed Pharmacother. 2017;93:1047-1054. doi:10.1016/j.biopha.2017.07.030.
Ganapathy K, Staklinski S, Hasan MF, et al. Multifaceted function of MicroRNA-299-3p fosters an antitumor environment through modulation of androgen receptor and VEGFA signaling pathways in prostate cancer. Sci Rep. 2020;10(1):5167. doi:10.1038/s41598-020-62038-3.
Guo J, Gan Q, Gan C, Zhang X, Ma X, Dong M. LncRNA MIR205HG regulates melanomagenesis via the miR-299-3p/VEGFA axis. Aging (Albany NY). 2021;13(4):5297-5311. doi:10.18632/aging.202450.
Zhao R, Liu Q, Lou C. MicroRNA-299-3p regulates proliferation, migration and invasion of human ovarian cancer cells by modulating the expression of OCT4. Arch Biochem Biophys. 2018;651:21-27. doi:10.1016/j.abb.2018.05.007.
Dang S, Zhou J, Wang Z, Wang K, Dai S, He S. MiR-299-3p functions as a tumor suppressor via targeting sirtuin 5 in hepatocellular carcinoma. Biomed Pharmacother. 2018;106:966-975. doi:10.1016/j.biopha.2018.06.042.
Chen M, Chi Y, Chen H, Zhao L. Long non-coding RNA USP30-AS1 aggravates the malignant progression of cervical cancer by sequestering microRNA-299-3p and thereby overexpressing PTP4A1. Oncol Lett. 2021;22(1):505. doi:10.3892/ol.2021.12766.
Chan TC, Hsing CH, Shiue YL, et al. Angiogenesis driven by the CEBPD-hsa-miR-429-VEGFA signaling Axis promotes urothelial carcinoma progression. Cell. 2022;11(4):638. doi:10.3390/cells11040638.
Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995;9(10):1149-1163. doi:10.1101/gad.9.10.1149.
Noh SJ, Li Y, Xiong Y, Guan KL. Identification of functional elements of p18INK4C essential for binding and inhibition of cyclin-dependent kinase (CDK) 4 and CDK6. Cancer Res. 1999;59(3):558-564.
Sanchez-Aguilera A, Delgado J, Camacho FI, et al. Silencing of the p18INK4c gene by promoter hypermethylation in reed-Sternberg cells in Hodgkin lymphomas. Blood. 2004;103(6):2351-2357. doi:10.1182/blood-2003-07-2356.
van Veelen W, Klompmaker R, Gloerich M, et al. P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int J Cancer. 2009;124(2):339-345. doi:10.1002/ijc.23977.
Zhou M, Mao Y, Yu S, et al. LINC00673 represses CDKN2C and promotes the proliferation of esophageal squamous cell carcinoma cells by EZH2-mediated H3K27 Trimethylation. Front Oncol. 2020;10:1546. doi:10.3389/fonc.2020.01546.
Gudas JM, Payton M, Thukral S, et al. Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol. 1999;19(1):612-622. doi:10.1128/MCB.19.1.612.
Akli S, Zhang XQ, Bondaruk J, et al. Low molecular weight cyclin E is associated with p27-resistant, high-grade, high-stage and invasive bladder cancer. Cell Cycle. 2012;11(7):1468-1476. doi:10.4161/cc.19882.
Takahashi K, Abe M, Hiwada K, Kokubu T. A novel troponin T-like protein (calponin) in vascular smooth muscle: interaction with tropomyosin paracrystals. J Hypertens Suppl. 1988;6(4):S40-S43. doi:10.1097/00004872-198812040-00008.
Takeoka M, Ehara T, Sagara J, Hashimoto S, Taniguchi S. Calponin h1 induced a flattened morphology and suppressed the growth of human fibrosarcoma HT1080 cells. Eur J Cancer. 2002;38(3):436-442. doi:10.1016/S0959-8049(01)00390-2.
Xu X, Nie J, Lu L, Du C, Meng F, Song D. LINC00337 promotes tumor angiogenesis in colorectal cancer by recruiting DNMT1, which suppresses the expression of CNN1. Cancer Gene Ther. 2021;28(12):1285-1297. doi:10.1038/s41417-020-00277-2.
Liu W, Fu X, Li R. CNN1 regulates the DKK1/Wnt/β-catenin/c-myc signaling pathway by activating TIMP2 to inhibit the invasion, migration and EMT of lung squamous cell carcinoma cells. Exp Ther Med. 2021;22(2):855. doi:10.3892/etm.2021.10287.
معلومات مُعتمدة: KMUH111-1M46 Kaohsiung Medical University Chung-Ho Memorial Hospital; 109-2314-B-037-105-MY3 National Science and Technology Council; 111-2811-B-037-021 National Science and Technology Council
فهرسة مساهمة: Keywords: VEGFA; miR-299-3p; prognosis; upper tract urothelial carcinoma
المشرفين على المادة: 0 (MicroRNAs)
0 (MIRN299 microRNA, human)
0 (Vascular Endothelial Growth Factor A)
0 (VEGFA protein, human)
تواريخ الأحداث: Date Created: 20231205 Date Completed: 20240205 Latest Revision: 20240205
رمز التحديث: 20240205
DOI: 10.1002/jgm.3616
PMID: 38049938
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-2254
DOI:10.1002/jgm.3616