دورية أكاديمية

Effect of CYP3A4*22, CYP3A5*3 and POR*28 genetic polymorphisms on calcineurin inhibitors dose requirements in early phase renal transplant patients.

التفاصيل البيبلوغرافية
العنوان: Effect of CYP3A4*22, CYP3A5*3 and POR*28 genetic polymorphisms on calcineurin inhibitors dose requirements in early phase renal transplant patients.
المؤلفون: Ebid AI; Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University., Ismail DA; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University., Lotfy NM; Department of Technology of Medical Laboratory, Faculty of Applied Health Sciences Technology, Badr University., Mahmoud MA; Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University., El-Sharkawy M; Department of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
المصدر: Pharmacogenetics and genomics [Pharmacogenet Genomics] 2024 Feb 01; Vol. 34 (2), pp. 43-52. Date of Electronic Publication: 2023 Dec 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 101231005 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-6880 (Electronic) Linking ISSN: 17446872 NLM ISO Abbreviation: Pharmacogenet Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hagerstown, MD : Lippincott Williams & Wilkins, c2005-
مواضيع طبية MeSH: Calcineurin Inhibitors*/adverse effects , Kidney Transplantation*, Humans ; Tacrolimus ; Cytochrome P-450 CYP3A/genetics ; Immunosuppressive Agents ; Cyclosporine ; Polymorphism, Genetic ; Genotype ; Polymorphism, Single Nucleotide
مستخلص: Objective: This study aimed to investigate the combined effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on tacrolimus and cyclosporine dose requirements.
Methods: One hundred thirty renal transplant patients placed on either tacrolimus or cyclosporine were recruited, where the effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on their dose requirements were studied at days 14, 30, and 90 post-transplantations.
Results: The POR*28 allele frequency in the studied population was 29.61%. The tacrolimus dose-adjusted trough concentration ratio (C0/D) was significantly lower in the fast metabolizers group ( CYP3A5*1/POR*28(CT/TT ) carriers) than in the poor metabolizers group ( CYP3A5*3/*3/CYP3A4*22 carriers) throughout the study (14, 30, and 90 days) ( P = 0.001, <0.001, and 0.003, respectively). Meanwhile, there was no significant effect of this gene combination on cyclosporine C0/D.
Conclusion: Combining the CYP3A5*3, POR*28 , and CYP3A4*22 genotypes can have a significant effect on early tacrolimus dose requirements determination and adjustments. However, it does not have such influence on cyclosporine dose requirements.
(Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.)
References: Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol 2005; 56:23–46.
Dai Y, Iwanaga K, Lin YS, Hebert MF, Davis CL, Huang W, et al. In vitro metabolism of cyclosporine a by human kidney CYP3A5. Biochem Pharmacol 2004; 68:1889–1902.
Kuypers DRJ, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 2007; 82:711–725.
Hebert MF. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev 1997; 27:201–214.
Hesselink DA, Bouamar R, Elens L, Van Schaik RHN, Van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet 2014; 53:123–139.
Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27:383–391.
Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 2015; 98:19–24.
Contreras-Castillo S, Plaza A, Stojanova J, Navarro G, Carmona R, Corvalán F, et al. Effect of CYP3A4, CYP3A5, MDR1 and POR genetic polymorphisms in immunosuppressive treatment in Chilean kidney transplanted patients. Front Pharmacol 2021; 12:674117.
Dai Y, Iwanaga K, Lin YS, Hebert MF, et al. In vitro metabolism of cyclosporine a by human kidney CYP3A5. Biochem Pharmacol 2004; 68:1889–1902.
Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 2011; 11:274–286.
Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 2011; 57:1574–1583.
Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D, et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors†TM dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics 2011; 12:1383–1396.
Pandey A, Flück CE. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 2013; 138:229–254.
de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DRJ. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 2011; 12:1281–1291.
Huang N, Agrawal V, Giacomini KM, Miller WL. Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc Natl Acad Sci U S A 2008; 105:1733–1738.
Oneda B, Crettol S, Sirot EJ, Bochud M, Ansermot N, Eap CB. The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics 2009; 19:877–883.
Elens L, Hesselink DA, Bouamar R, Budde K, de Fijter JW, De Meyer M, et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine a in renal transplant patients. Ther Drug Monit 2014; 36:71–79.
Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S, et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 2014; 70:685–693.
Zhang JJ, Liu SB, Xue L, Ding XL, Zhang H, Miao LY. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Int J Clin Pharmacol Ther 2015; 53:728–736.
Christians U, Jacobsen W, Benet LZ, Lampen A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet 2002; 41:813–851.
Ekberg H, Tedesco-Silva H, Demirbas A, Vítko S, Nashan B, Gürkan A, et al.; ELITE-Symphony Study. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007; 357:2562–2575.
Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist pharmacokinetics of calcineurin inhibitors. Clin J Am Soc Nephrol 2007; 2:374–384.
Kuypers D, de Loor H, Naesens M, Coopmans T, de Jonge H. Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet Genomics 2014; 24:597–606.
Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med 2017; 19:215–223.
Mendrinou E, Mashaly ME, al Okily AM, Mohamed ME, Refaie AF, Elsawy EM, et al. CYP3A5 gene-guided tacrolimus treatment of living-donor Egyptian kidney transplanted patients. Front Pharmacol 2020; 11:1218.
Shilbayeh S, Zmeili R, Almardini RI. The impact of CYP3A5 and MDR1 polymorphisms on tacrolimus dosage requirements and trough concentrations in pediatric renal transplant recipients. Saudi J Kidney Dis Transpl 2013; 24:1125–1136.
Aouam K, Kolsi A, Kerkeni E, Ben Fredj N, Chaabane A, Monastiri K, et al. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase. Pharmacogenomics 2015; 16:2045–2054.
Tang JT, Andrews LM, van Gelder T, Shi YY, van Schaik RHN, Wang LL, et al. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: Recent developments and ethnic considerations. Expert Opin Drug Metab Toxicol 2016; 12:555–565.
Chakkera HA, Chang YH, Bodner JK, Behmen S, Heilman RL, Reddy KS, et al. Genetic differences in native americans and tacrolimus dosing after kidney transplantation. Transplant Proc 2013; 45:137–141.
Agrawal V, Huang N, Miller WL. Pharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet Genomics 2008; 18:569–576.
Mutawi TM, Zedan MM, Yahya RS, Zakria MM, El-Sawi MR, Gaedigk A. Genetic variability of CYP2D6, CYP3A4 and CYP3A5 among the Egyptian population. Pharmacogenomics 2021; 22:323–334.
Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther 2017; 102:688–700.
Phupradit A, Vadcharavivad S, Ingsathit A, Kantachuvesiri S, Areepium N, Sra-Ium S, et al. Impact of POR and CYP3A5 polymorphisms on trough concentration to dose ratio of tacrolimus in the early post-operative period following kidney transplantation. Ther Drug Monit 2018; 40:549–557.
Jannot AS, Vuillemin X, Etienne I, Buchler M, Hurault de Ligny B, Choukroun G, et al. A lack of significant effect of POR*28 allelic variant on tacrolimus exposure in kidney transplant recipients. Ther Drug Monit 2016; 38:223–229.
Veerakikosol K, Chariyavilaskul P, Townamchai N, Wittayalertpanya S. Association of CYP3A5 and POR polymorphisms with the maintenance tacrolimus dosage requirement in Thai recipients of kidney transplants. Asian Biomed 2016; 10:483–490.
Cvetković M, Zivković M, Bundalo M, Gojković I, Spasojević-Dimitrijeva B, Stanković A, et al. Effect of age and allele variants of CYP3A5, CYP3A4, and POR genes on the pharmacokinetics of cyclosporin a in pediatric renal transplant recipients from serbia. Ther Drug Monit 2017; 39:589–595.
Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD, et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34:836–847.
Gomes AM, Winter S, Klein K, Turpeinen M, Schaeffeler E, Schwab M, et al. Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics 2009; 10:579–599.
Agrawal V, Choi JH, Giacomini KM, Miller WL. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics 2010; 20:611–618.
المشرفين على المادة: 0 (Calcineurin Inhibitors)
WM0HAQ4WNM (Tacrolimus)
EC 1.14.14.1 (Cytochrome P-450 CYP3A)
0 (Immunosuppressive Agents)
83HN0GTJ6D (Cyclosporine)
EC 1.14.14.1 (CYP3A5 protein, human)
EC 1.14.14.55 (CYP3A4 protein, human)
تواريخ الأحداث: Date Created: 20231205 Date Completed: 20231220 Latest Revision: 20231220
رمز التحديث: 20231220
DOI: 10.1097/FPC.0000000000000516
PMID: 38050720
قاعدة البيانات: MEDLINE
الوصف
تدمد:1744-6880
DOI:10.1097/FPC.0000000000000516