دورية أكاديمية

The development of in vitro organotypic 3D vulvar models to study tumor-stroma interaction and drug efficacy.

التفاصيل البيبلوغرافية
العنوان: The development of in vitro organotypic 3D vulvar models to study tumor-stroma interaction and drug efficacy.
المؤلفون: Wu S; Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands., Huisman BW; Center for Human Drug Research, Leiden, 2333 CL, The Netherlands.; Department of Gynecology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands., Rietveld MH; Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands., Rissmann R; Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.; Center for Human Drug Research, Leiden, 2333 CL, The Netherlands.; Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands., Vermeer MH; Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands., van Poelgeest MIE; Center for Human Drug Research, Leiden, 2333 CL, The Netherlands.; Department of Gynecology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands., El Ghalbzouri A; Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands. a.ghalbzouri@lumc.nl.
المصدر: Cellular oncology (Dordrecht) [Cell Oncol (Dordr)] 2024 Jun; Vol. 47 (3), pp. 883-896. Date of Electronic Publication: 2023 Dec 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 101552938 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2211-3436 (Electronic) Linking ISSN: 22113428 NLM ISO Abbreviation: Cell Oncol (Dordr) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht : Springer
مواضيع طبية MeSH: Vulvar Neoplasms*/pathology , Vulvar Neoplasms*/metabolism , Tumor Microenvironment*/drug effects , Antineoplastic Agents*/pharmacology , Antineoplastic Agents*/therapeutic use, Female ; Humans ; Cell Line, Tumor ; Stromal Cells/pathology ; Stromal Cells/metabolism ; Cancer-Associated Fibroblasts/pathology ; Cancer-Associated Fibroblasts/metabolism ; Fibroblasts/pathology ; Fibroblasts/metabolism ; Fibroblasts/drug effects ; Vulva/pathology ; Models, Biological ; Carcinoma, Squamous Cell/pathology ; Cell Proliferation/drug effects ; Cell Culture Techniques, Three Dimensional/methods ; Epithelial-Mesenchymal Transition/drug effects
مستخلص: Background: Vulvar squamous cell carcinoma (VSCC) is a rare disease with a poor prognosis. To date, there's no proper in vitro modeling system for VSCC to study its pathogenesis or for drug evaluation.
Methods: We established healthy vulvar (HV)- and VSCC-like 3D full thickness models (FTMs) to observe the tumor-stroma interaction and their applicability for chemotherapeutic efficacy examination. VSCC-FTMs were developed by seeding VSCC tumor cell lines (A431 and HTB117) onto dermal matrices harboring two NF subtypes namely papillary fibroblasts (PFs) and reticular fibroblasts (RFs), or cancer-associated fibroblasts (CAFs) while HV-FTMs were constructed with primary keratinocytes and fibroblasts isolated from HV tissues.
Results: HV-FTMs highly resembled HV tissues in terms of epidermal morphogenesis, basement membrane formation and collagen deposition. When the dermal compartment shifted from PFs to RFs or CAFs in VSCC-FTMs, tumor cells demonstrated more proliferation, EMT induction and stemness. In contrast to PFs, RFs started to lose their phenotype and express robust CAF-markers α-SMA and COL11A1 under tumor cell signaling induction, indicating a favored 'RF-to-CAF' transition in VSCC tumor microenvironment (TME). Additionally, chemotherapeutic treatment with carboplatin and paclitaxel resulted in a significant reduction in tumor-load and invasion in VSCC-FTMs.
Conclusion: We successfully developed in vitro 3D vulvar models mimicking both healthy and tumorous conditions which serve as a promising tool for vulvar drug screening programs. Moreover, healthy fibroblasts demonstrate heterogeneity in terms of CAF-activation in VSCC TME which brings insights in the future development of novel CAF-based therapeutic strategies in VSCC.
(© 2023. Springer Nature Switzerland AG.)
References: A. Tan, A.K. Bieber, J.A. Stein, M.K. Pomeranz, J. Am. Acad. Dermatol. 81, 1387–1396 (2019). https://doi.org/10.1016/j.jaad.2019.07.055. (PMID: 10.1016/j.jaad.2019.07.05531349045)
K.N. Gaarenstroom, G.G. Kenter, J.B. Trimbos, I. Agous, F. Amant, A.A. Peters, I. Vergote, Int. J. Gynecol. Cancer 13, 522–527 (2003). https://doi.org/10.1046/j.1525-1438.2003.13304.x. (PMID: 10.1046/j.1525-1438.2003.13304.x12911732)
L.S. Nooij, F.A. Brand, K.N. Gaarenstroom, C.L. Creutzberg, J.A. de Hullu, M.I. van Poelgeest, Crit. Rev. Oncol. Hematol. 106, 1–13 (2016). https://doi.org/10.1016/j.critrevonc.2016.07.007. (PMID: 10.1016/j.critrevonc.2016.07.00727637349)
G. Biffi, D.A. Tuveson, Physiol. Rev. 101, 147–176 (2021). https://doi.org/10.1152/physrev.00048.2019. (PMID: 10.1152/physrev.00048.201932466724)
D.T. Woodley, Dermatol. Clin. 35, 95–100 (2017). https://doi.org/10.1016/j.det.2016.07.004. (PMID: 10.1016/j.det.2016.07.00427890241)
H. Dongre, N. Rana, S. Fromreide, S. Rajthala, I. Bøe Engelsen, J. Paradis, J.S. Gutkind, O.K. Vintermyr, A.C. Johannessen, L. Bjørge, D.E. Costea, Exp. Cell. Res. 386, 111684 (2020). https://doi.org/10.1016/j.yexcr.2019.111684. (PMID: 10.1016/j.yexcr.2019.11168431654625)
K. Lõhmussaar, M. Boretto, H. Clevers, Trends Cancer 6, 1031–1043 (2020). https://doi.org/10.1016/j.trecan.2020.07.007. (PMID: 10.1016/j.trecan.2020.07.00732855097)
N.E. Sharpless, R.A. Depinho, Nat. Rev. Drug Discov. 5, 741–754 (2006). https://doi.org/10.1038/nrd2110. (PMID: 10.1038/nrd211016915232)
J. Chollet, F. Mermelstein, S.C. Rocamboli, D.R. Friend, Int. J. Pharm. 570, 118691 (2019). https://doi.org/10.1016/j.ijpharm.2019.118691. (PMID: 10.1016/j.ijpharm.2019.11869131518632)
H.T. Nguyen-Xuan, R. Montero Macias, H. Bonsang-Kitzis, M. Deloménie, C. Ngô, M. Koual, A.S. Bats, M. Hivelin, F. Lécuru, V. Balaya, J. Gynecol. Obstet. Hum. Reprod. 50, 101768 (2021). https://doi.org/10.1016/j.jogoh.2020.101768. (PMID: 10.1016/j.jogoh.2020.10176832335349)
S. Commandeur, S.J. Sparks, H.L. Chan, L. Gao, J.J. Out, N.A. Gruis, R. van Doorn, A. El Ghalbzouri, Melanoma Res. 24, 305–314 (2014). https://doi.org/10.1097/cmr.0000000000000079. (PMID: 10.1097/cmr.000000000000007924892959)
V. van Drongelen, E.M. Haisma, J.J. Out-Luiting, P.H. Nibbering, A. El Ghalbzouri, Clin. Exp. Allergy 44, 1515–1524 (2014). https://doi.org/10.1111/cea.12443. (PMID: 10.1111/cea.1244325352374)
A. El Ghalbzouri, R. Siamari, R. Willemze, M. Ponec, Toxicol. In Vitro 22, 1311–1320 (2008). https://doi.org/10.1016/j.tiv.2008.03.012. (PMID: 10.1016/j.tiv.2008.03.01218474418)
R.S. Raktoe, M.H. Rietveld, J.J. Out-Luiting, M. Kruithof-de Julio, P.P. van Zuijlen, R. van Doorn, A.E. Ghalbzouri, Scars Burn Heal 6, 2059513120908857 (2020). https://doi.org/10.1177/2059513120908857. (PMID: 10.1177/2059513120908857325287347263111)
J.A. Bouwstra, R.W.J. Helder, A.E. Ghalbzouri, Adv. Drug Deliv. Rev. 175, 113802 (2021). https://doi.org/10.1016/j.addr.2021.05.012. (PMID: 10.1016/j.addr.2021.05.01234015420)
D. Janson, G. Saintigny, C. Mahé, A.E. Ghalbzouri, Exp. Dermatol. 22, 48–53 (2013). https://doi.org/10.1111/exd.12069. (PMID: 10.1111/exd.1206923278894)
S. Wu, M. Rietveld, M. Hogervorst, F. de Gruijl, S. van der Burg, M. Vermeer, R. van Doorn, M. Welters, A. El Ghalbzouri, Int. J. Mol. Sci. 23, 11651 (2022). https://doi.org/10.3390/ijms231911651. (PMID: 10.3390/ijms231911651362329529570214)
N. Scola, T. Gambichler, H. Saklaoui, F.G. Bechara, D. Georgas, M. Stücker, R. Gläser, A. Kreuter, Br. J. Dermatol. 167, 591–597 (2012). https://doi.org/10.1111/j.1365-2133.2012.11110.x. (PMID: 10.1111/j.1365-2133.2012.11110.x22709331)
M. Sadrkhanloo, M. Entezari, S. Orouei, M. Ghollasi, N. Fathi, S. Rezaei, E.S. Hejazi, A. Kakavand, H. Saebfar, M. Hashemi, M. Goharrizi, S. Salimimoghadam, M. Rashidi, A. Taheriazam, S. Samarghandian, Pharmacol. Res. 182, 106311 (2022). https://doi.org/10.1016/j.phrs.2022.106311. (PMID: 10.1016/j.phrs.2022.10631135716914)
A. Waseem, B. Dogan, N. Tidman, Y. Alam, P. Purkis, S. Jackson, A. Lalli, M. Machesney, I.M. Leigh, J. Invest. Dermatol. 112, 362–369 (1999). https://doi.org/10.1046/j.1523-1747.1999.00535.x. (PMID: 10.1046/j.1523-1747.1999.00535.x10084315)
I.M. Freedberg, M. Tomic-Canic, M. Komine, M. Blumenberg, J. Invest. Dermatol. 116, 633–640 (2001). https://doi.org/10.1046/j.1523-1747.2001.01327.x. (PMID: 10.1046/j.1523-1747.2001.01327.x11348449)
R. Moll, W.W. Franke, D.L. Schiller, B. Geiger, R. Krepler, Cell 31, 11–24 (1982). https://doi.org/10.1016/0092-8674(82)90400-7. (PMID: 10.1016/0092-8674(82)90400-76186379)
O.H. Kwon, J.L. Park, M. Kim, J.H. Kim, H.C. Lee, H.J. Kim, S.M. Noh, K.S. Song, H.S. Yoo, S.G. Paik, S.Y. Kim, Y.S. Kim, Biochem. Biophys. Res. Commun. 406, 539–545 (2011). https://doi.org/10.1016/j.bbrc.2011.02.082. (PMID: 10.1016/j.bbrc.2011.02.08221345334)
H. Zhang, Y.Z. Pan, M. Cheung, M. Cao, C. Yu, L. Chen, L. Zhan, Z.W. He, C.Y. Sun, Cell Death Dis. 10, 230 (2019). https://doi.org/10.1038/s41419-019-1320-z. (PMID: 10.1038/s41419-019-1320-z308505866408539)
M. Tran, P. Rousselle, P. Nokelainen, S. Tallapragada, N.T. Nguyen, E.F. Fincher, M.P. Marinkovich, Cancer Res. 68, 2885–2894 (2008). https://doi.org/10.1158/0008-5472.Can-07-6160. (PMID: 10.1158/0008-5472.Can-07-616018413757)
D. Nassar, C. Blanpain, Annu. Rev. Pathol. 11, 47–76 (2016). https://doi.org/10.1146/annurev-pathol-012615-044438. (PMID: 10.1146/annurev-pathol-012615-04443827193450)
S. Chen, M. Takahara, M. Kido, S. Takeuchi, H. Uchi, Y. Tu, Y. Moroi, M. Furue, Br. J. Dermatol. 159, 952–955 (2008). https://doi.org/10.1111/j.1365-2133.2008.08731.x. (PMID: 10.1111/j.1365-2133.2008.08731.x18647309)
M.P. Gomez Hernandez, A.M. Bates, E.E. Starman, E.A. Lanzel, C. Comnick, X.J. Xie, K.A. Brogden, Antibiot. (Basel). 8 (2019). https://doi.org/10.3390/antibiotics8040161.
Y. Du, Y. Yang, W. Zhang, C. Yang, P. Xu, Transl. Oncol. 27, 101582 (2023). https://doi.org/10.1016/j.tranon.2022.101582. (PMID: 10.1016/j.tranon.2022.10158236403504)
M. Hogervorst, M. Rietveld, F. de Gruijl, A. El Ghalbzouri, Br. J. Cancer. 118, 1089–1097 (2018). https://doi.org/10.1038/s41416-018-0024-y. (PMID: 10.1038/s41416-018-0024-y295517765931114)
J.P. Thiery, Nat. Rev. Cancer 2, 442–454 (2002). https://doi.org/10.1038/nrc822. (PMID: 10.1038/nrc82212189386)
Z. Abdulrahman, K.E. Kortekaas, P.J. De Vos Van Steenwijk, S.H. Van Der Burg, M.I. Van Poelgeest, Expert Opin. Biol. Ther. 18, 1223–1233 (2018). https://doi.org/10.1080/14712598.2018.1542426.
K. Räsänen, A. Vaheri, Exp. Cell Res. 316, 2713–2722 (2010). https://doi.org/10.1016/j.yexcr.2010.04.032. (PMID: 10.1016/j.yexcr.2010.04.03220451516)
P.O. Witteveen, J. van der Velden, I. Vergote, C. Guerra, C. Scarabeli, C. Coens, G. Demonty, N. Reed, Ann. Oncol. 20, 1511–1516 (2009). https://doi.org/10.1093/annonc/mdp043. (PMID: 10.1093/annonc/mdp043194874872731017)
S.N. Han, I. Vergote, F. Amant, Int. J. Gynecol. Cancer 22, 865–868 (2012). https://doi.org/10.1097/IGC.0b013e31824b4058. (PMID: 10.1097/IGC.0b013e31824b405822552830)
H. Wang, P.C. Brown, E.C.Y. Chow, L. Ewart, S.S. Ferguson, S. Fitzpatrick, B.S. Freedman, G.L. Guo, W. Hedrich, S. Heyward, J. Hickman, N. Isoherranen, A.P. Li, Q. Liu, S.M. Mumenthaler, J. Polli, W.R. Proctor, A. Ribeiro, J.Y. Wang, R.L. Wange, S.M. Huang, Clin. Transl. Sci. 14, 1659–1680 (2021). https://doi.org/10.1111/cts.13066. (PMID: 10.1111/cts.13066339824368504835)
S. Breslin, L. O’Driscoll, Drug Discov. Today 18, 240–249 (2013). https://doi.org/10.1016/j.drudis.2012.10.003. (PMID: 10.1016/j.drudis.2012.10.00323073387)
K. Dame, A.J. Ribeiro, Exp. Biol. Med. (Maywood) 246, 317–331 (2021). https://doi.org/10.1177/1535370220959598. (PMID: 10.1177/153537022095959832938227)
S.N. Ooft, F. Weeber, K.K. Dijkstra, C.M. McLean, S. Kaing, E. van Werkhoven, L. Schipper, L. Hoes, D.J. Vis, J. van de Haar, W. Prevoo, P. Snaebjornsson, D. van der Velden, M. Klein, M. Chalabi, H. Boot, M. van Leerdam, H.J. Bloemendal, L.V. Beerepoot, L. Wessels, E. Cuppen, H. Clevers, E.E. Voest, Sci. Transl. Med. 11, eaay2574 (2019). https://doi.org/10.1126/scitranslmed.aay2574. (PMID: 10.1126/scitranslmed.aay257431597751)
K.E. Kortekaas, S.J. Santegoets, L. Tas, I. Ehsan, P. Charoentong, H.C. van Doorn, M.I.E. van Poelgeest, D.A.M. Mustafa, S.H. van der Burg, J. Immunother Cancer 9, e003671 (2021). https://doi.org/10.1136/jitc-2021-003671. (PMID: 10.1136/jitc-2021-003671347162088559240)
معلومات مُعتمدة: 8222-32146 Bontiusstichting
فهرسة مساهمة: Keywords: 3D model; Cancer associated fibroblast; Chemotherapeutics; EMT; Tumor invasion; Vulvar squamous cell carcinoma
المشرفين على المادة: 0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20231206 Date Completed: 20240702 Latest Revision: 20240702
رمز التحديث: 20240703
DOI: 10.1007/s13402-023-00902-w
PMID: 38057628
قاعدة البيانات: MEDLINE