دورية أكاديمية

Hyaluronic acid enhances cell migration, viability, and mineralized tissue-specific genes in cementoblasts.

التفاصيل البيبلوغرافية
العنوان: Hyaluronic acid enhances cell migration, viability, and mineralized tissue-specific genes in cementoblasts.
المؤلفون: Hakki SS; Department of Periodontology, Faculty of Dentistry, Selcuk University, Konya, Turkey., Bozkurt SB; Department of Biochemistry, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey., Sculean A; Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland., Božić D; Department of Periodontology, School of Dental Medicine, University Clinical hospital, Zagreb, Croatia.
المصدر: Journal of periodontal research [J Periodontal Res] 2024 Feb; Vol. 59 (1), pp. 63-73. Date of Electronic Publication: 2023 Dec 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 0055107 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-0765 (Electronic) Linking ISSN: 00223484 NLM ISO Abbreviation: J Periodontal Res Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Wiley-Blackwell
Original Publication: Copenhagen : Munksgaard International Publishers
مواضيع طبية MeSH: Dental Cementum* , beta Catenin*/metabolism, Core Binding Factor Alpha 1 Subunit/metabolism ; Hyaluronic Acid/pharmacology ; Cell Line ; Osteocalcin/metabolism ; Integrin-Binding Sialoprotein/metabolism ; Cell Differentiation ; Cell Movement ; RNA, Messenger/metabolism
مستخلص: Background/objectives: It has been repeatedly demonstrated that cementum formation is a crucial step in periodontal regeneration. Hyaluronic acid (HA) is an important component of the extracellular matrix which regulates cells functions and cell-cell communication. Hyaluronic acid/derivatives have been used in regenerative periodontal therapy, but the cellular effects of HA are still unknown. To investigate the effects of HA on cementoblast functions, cell viability, migration, mineralization, differentiation, and mineralized tissue-associated genes and cementoblast-specific markers of the cementoblasts were tested.
Materials and Methods: Cementoblasts (OCCM-30) were treated with various dilutions (0, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128) of HA and examined for cell viability, migration, mineralization, and gene expressions. The mRNA expressions of osteocalcin (OCN), runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP), collagen type I (COL-I), alkaline phosphatase (ALP), cementum protein-1 (CEMP-1), cementum attachment protein (CAP), and small mothers against decapentaplegic (Smad) -1, 2, 3, 6, 7, β-catenin (Ctnnb1) were performed with real-time polymerase chain reaction (RT-PCR). Total RNA was isolated on days 3 and 8, and cell viability was determined using MTT assay on days 1 and 3. The cell mineralization was evaluated by von Kossa staining on day 8. Cell migration was assessed 2, 4, 6, and 24 hours following exposure to HA dilutions using an in vitro wound healing assay (0, 1:2, 1:4, 1:8).
Results: At dilution of 1:2 to 1:128, HA importantly increased cell viability (p < .01). HA at a dilution of 1/2 increased wound healing rates after 4 h compared to the other dilutions and the untreated control group. Increased numbers of mineralized nodules were determined at dilutions of 1:2, 1:4, and 1:8 compared with control group. mRNA expressions of mineralized tissue marker including COL-I, BSP, RunX2, ALP, and OCN significantly improved by HA treatments compared with control group both on 3 days and on 8 days (p < .01). Smad 2, Smad 3, Smad 7, and β-catenin (Ctnnb1) mRNAs were up-regulated, while Smad1 and Smad 6 were not affected by HA administration. Additionally, HA at dilutions of 1:2, 1:4, and 1:8 remarkably enhanced CEMP-1 and CAP expressions in a dilution- and time-dependent manner (p < .01).
Conclusions: The present results have demonstrated that HA affected the expression of both mineralized tissue markers and cementoblast-specific genes. Positive effects of HA on the cementoblast functions demonstrated that HA application may play a key role in cementum regeneration.
(© 2023 The Authors. Journal of Periodontal Research published by John Wiley & Sons Ltd.)
References: Casale M, Moffa A, Vella P, et al. Hyaluronic acid: perspectives in dentistry. A systematic review. Int J Immunopathol Pharmacol. 2016;29(4):572-582.
Ijuin C, Ohno S, Tanimoto K, Honda K, Tanne K. Regulation of hyaluronan synthase gene expression in human periodontal ligament cells by tumour necrosis factor-alpha, interleukin-1beta and interferon-gamma. Arch Oral Biol. 2001;46(8):767-772.
Eliezer M, Imber JC, Sculean A, Pandis N, Teich S. Hyaluronic acid as adjunctive to non-surgical and surgical periodontal therapy: a systematic review and meta-analysis. Clin Oral Investig. 2019;23(9):3423-3435.
Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999;7(2):79-89.
Aydinyurt HS, Akbal D, Altindal D, Bozoglan A, Ertugrul AS, Demir H. Evaluation of biochemical and clinical effects of hyaluronic acid on non-surgical periodontal treatment: a randomized controlled trial. Ir J Med Sci. 2020;189(4):1485-1494.
Azraq I, Craveiro RB, Niederau C, et al. Gene expression and phosphorylation of ERK and AKT are regulated depending on mechanical force and cell confluence in murine cementoblasts. Ann Anat. 2021;234:151668.
Matthews BG, Roguljic H, Franceschetti T, et al. Gene-expression analysis of cementoblasts and osteoblasts. J Periodontal Res. 2016;51(3):304-312.
Arzate H, Zeichner-David M, Mercado-Celis G. Cementumproteins: role in cementogenesis, biomineralization, periodon-tium formation and regeneration. Periodontol 2000. 2015;67(1):211-233.
Grzesik WJ, Narayanan AS. Cementum and periodontal wound healing and regeneration. Crit Rev Oral Biol Med. 2002;13(6):474-484.
Saygin NE, Giannobile WV, Somerman MJ. Molecular and cell biology of cementum. Periodontol 2000. 2000;2000(24):73-98.
Martin P. Wound healing-aiming for perfect skin regeneration. Science. 1997;276:75-81.
Pitaru S, McCulloch CA, Narayanan SA. Cellular origins and differentiation control mechanisms during periodontal development and wound healing. J Periodontal Res. 1994;29:81-94.
Arzate H, Chimal-Monroy J, Hernandez-Lagunas L, Diaz de Leon L. Human cementum protein extract promotes chondrogenesis and mineralization in mesenchymal cells. J Periodontal Res. 1996;31:144-148.
BarKana I, Narayanan AS, Grosskop A, Savion N, Pitaru S. Cementum attachment protein enriches putative cementoblastic populations on root surfaces in vitro. J Dent Res. 2000;79:1482-1488.
Falcone SJ, Palmeri DM, Berg RA. Rheological and cohesive properties of hyaluronic acid. J Biomed Mater Res A. 2006;76:721-728.
Frenkel JS. The role of hyaluronan in wound healing. Int Wound J. 2014;11:159-163.
Neuman MG, Nanau RM, Oruña-Sanchez L, Coto G. Hyaluronic acid and wound healing. J Pharm Pharm Sci. 2015;18:53-60.
Marin S, Popovic-Pejicic S, Radosevic-Caric B, Trtić N, Tatic Z, Selakovic S. Hyaluronic acid treatment outcome on the post-extraction wound healing in patients with poorly controlled type 2 diabetes: A randomized controlled split-mouth study. Med Oral Patol Oral Cir Bucal. 2020;25(2):e154-e160.
Bartold P. Proteoglycans of the periodontium: structure Role and Function. J Periodontal Res. 1987;22:431-444.
Bozic D, Grgurevic L, Erjavec I, et al. The proteome and gene expression profile of cementoblastic cells treated by bone morphogenetic protein-7 in vitro. J Clin Periodontol. 2012;39:80-90.
Yeh Y, Yang Y, Yuan K. Importance of CD44 in the proliferation and mineralization of periodontal ligament cells. J Periodontal Res. 2014;49:827-835.
Takeda K, Sakai N, Shiba H, et al. Characteristics of high-molecular-weight hyaluronic acid as a brain-derived neurotrophic factor scaffold in periodontal tissue regeneration. Tissue Eng Part A. 2011;17(7-8):955-967.
Shirakata Y, Imafuji T, Nakamura T, et al. Periodontal wound healing/regeneration of two-wall intrabony defects following reconstructive surgery with cross-linked hyaluronic acid-gel with or without a collagen matrix: A preclinical study in dogs. Quintessence Int. 2021;52:308-316.
Shirakata Y, Nakamura T, Kawakami Y, et al. Healing of buccal gingival recessions following treatment with coronally advanced flap alone or combined with a cross-linked hyaluronic acid gel. An experimental study in dogs. J Clin Periodontol. 2021;48:570-580.
Shirakata Y, Imafuji T, Nakamura T, et al. Cross-linked hyaluronic acid gel with or without a collagen matrix in the treatment of class III furcation defects: A histologic and histomorphometric study in dogs. J Clin Periodontol. 2022;49(10):1079-1089.
Pilloni A, Rojas MA, Marini L, et al. Healing of intrabony defects following regenerative surgery by means of single-flap approach in conjunction with either hyaluronic acid or an enamel matrix derivative: A 24-month randomized controlled clinical trial. Clin Oral Investig. 2021;25:5095-5107.
Božić D, Ćatović I, Badovinac A, Musić L, Par M, Sculean A. Treatment of intrabony defects with a combination of hyaluronic acid and deproteinized porcine bone mineral. Materials. 2021;14:6795.
Mamajiwala AS, Sethi KS, Raut CP, Karde PA, Mamajiwala BS. Clinical and radiographic evaluation of 0.8% hyaluronic acid as an adjunct to open flap debridement in the treatment of periodontal intrabony defects: randomized controlled clinical trial. Clin Oral Investig. 2021;25(9):5257-5271.
D'Errico JA, Ouyang H, Berry JE, et al. Immortalized cementoblasts and periodontal ligament cells in culture. Bone. 1999;25:39-47.
Fujioka-Kobayashi M, Müller HD, Mueller A, et al. In vitro effects of hyaluronic acid on human periodontal ligament cells. BMC Oral Health. 2017;17(1):44.
Mueller A, Fujioka-Kobayashi M, Mueller HD, et al. Effect of hyaluronic acid on morphological changes to dentin surfaces and subsequent effect on periodontal ligament cell survival, attachment, and spreading. Clin Oral Investig. 2017;21(4):1013-1019.
Asparuhova MB, Kiryak D, Eliezer M, Mihov D, Sculean A. Activity of two hyaluronan preparations on primary human oral fibroblasts. J Periodontal Res. 2019;54(1):33-45.
Dahiya P, Kamal R. Hyaluronic acid: a boon in periodontal therapy. N Am J Med Sci. 2013;5(5):309-315.
Hakki SS, Foster BL, Nagatomo KJ, et al. Bone morphogenetic protein-7 enhances cementoblast function in vitro. J Periodontol. 2010;81(11):1663-1674.
Hanieh PN, Forte J, Di Meo C, et al. Hyaluronic acid derivative effect on niosomal coating and interaction with cellular mimetic membranes. Molecules. 2021;26(11):3434.
Zhao J, Faure L, Adameyko I, Sharpe PT. Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis. Stem Cells. 2021;39(1):92-102.
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747-754.
Hirata A, Sugahara T, Nakamura H. Localization of runx2, osterix, and osteopontin in tooth root formation in rat molars. J Histochem Cytochem. 2009;57:397-403.
Pan K, Yan S, Ge S, Li S, Zhao Y, Yang P. Effects of core binding factor alpha1 or bone morphogenic protein-2 overexpression on osteoblast/cementoblast-related gene expressions in NIH3T3 mouse cells and dental follicle cells. Cell Prolif. 2009;42:364-372.
Pan K, Sun Q, Zhang J, et al. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif. 2010;43:219-228.
Paula-Silva FW, Ghosh A, Arzate H, Kapila S, da Silva LA, Kapila YL. Calcium hydroxide promotes cementogenesis and induces cementoblastic differentiation of mesenchymal periodontal ligament cells in a CEMP1- and ERK-dependent manner. Calcif Tissue Int. 2010;87:144-157.
Aida Y, Kurihara H, Kato K. Wnt3a promotes differentiation of human bone marrow-derived mesenchymal stem cells into cementoblast-like cells. In Vitro Cell Dev Biol Anim. 2018;54(6):468-476.
Liu HW, Yacobi R, Savion N, Narayanan AS, Pitaru S. A collagenous cementum-derived attachment protein is a marker for progenitors of the mineralized tissue-forming cell lineage of the periodontal ligament. J Bone Miner Res. 1997;12:1691-1699.
Villarreal-Ramirez E, Moreno A, Mas-Oliva J, et al. Characterization of recombinant human cementum protein 1 (hrCEMP1): primary role in biomineralization. Biochem Biophys Res Commun. 2009;384:49-54.
Hoz L, López S, Zeichner-David M, Arzate H. Regeneration of rat periodontium by cementum protein 1-derived peptide (CEMP1-p1). J Periodontal Res. 2021;56:1223-1232.
Lim JC, Bae SH, Lee G, Ryu CJ, Jang YJ. Activation of β-catenin by TGF-β1 promotes ligament-fibroblastic differentiation and inhibits cementoblastic differentiation of human periodontal ligament cells. Stem Cells. 2020;38:1612-1623. doi:10.1002/stem.3275.
Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685-700.
Ishibashi O, Ikegame M, Takizawa F, et al. Endoglin is involved in BMP-2-induced osteogenic differentiation of periodontal ligament cells through a pathway independent of Smad-1/5/8 phosphorylation. J Cell Physiol. 2010;222:465-473.
Torii D, Konishi K, Watanabe N, Goto S, Tsutsui T. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament. Odontology. 2015;103:27-35.
Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 2005;16(3):251-263.
Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol. 2017;9(3):a022095.
Zhang R, Yang G, Wu X, Xie J, Yang X, Li T. Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci. 2013;9(3):228-236.
Choi H, Kim TH, Yang S, et al. A reciprocal interaction between β-catenin and osterix in cementogenesis. Sci Rep. 2017;7:8160.
Turkkahraman H, Yuan X, Salmon B, Chen CH, Brunski JB, Helms JA. Root resorption and ensuing cementum repair by Wnt/β-catenin dependent mechanism. Am J Orthod Dentofacial Orthop. 2020;158(1):16-27.
Lee SY, Auh QS, Kang SK, et al. Combined effects of dentin sialoprotein and bone morphogenetic protein-2 on differentiation in human cementoblasts. Cell Tissue Res. 2014;357(1):119-132.
Liu S, Zhou Y, Chen Y, et al. Bmal1 promotes cementoblast differentiation and cementum mineralization via Wnt/β-catenin signaling. Acta Histochem. 2022;124(3):151868.
فهرسة مساهمة: Keywords: cell viability; cementoblast; hyaluronic acid; mRNA expression; migration; mineralization
المشرفين على المادة: 0 (beta Catenin)
0 (Core Binding Factor Alpha 1 Subunit)
9004-61-9 (Hyaluronic Acid)
104982-03-8 (Osteocalcin)
0 (Integrin-Binding Sialoprotein)
0 (RNA, Messenger)
تواريخ الأحداث: Date Created: 20231209 Date Completed: 20240214 Latest Revision: 20240214
رمز التحديث: 20240214
DOI: 10.1111/jre.13201
PMID: 38069670
قاعدة البيانات: MEDLINE