دورية أكاديمية

Prediction of acute rejection in renal allografts using shear-wave dispersion slope.

التفاصيل البيبلوغرافية
العنوان: Prediction of acute rejection in renal allografts using shear-wave dispersion slope.
المؤلفون: Kim TM; Department of Radiology, Seoul National University Hospital, Seoul, South Korea.; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea., Ahn H; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea.; Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea., Cho JY; Department of Radiology, Seoul National University Hospital, Seoul, South Korea.; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea., Han A; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea., Min SI; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea., Ha J; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea., Kim SY; Department of Radiology, Seoul National University Hospital, Seoul, South Korea. iwishluv@empas.com.; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea. iwishluv@empas.com.
المصدر: European radiology [Eur Radiol] 2024 Jul; Vol. 34 (7), pp. 4527-4537. Date of Electronic Publication: 2023 Dec 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 9114774 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1084 (Electronic) Linking ISSN: 09387994 NLM ISO Abbreviation: Eur Radiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer International, c1991-
مواضيع طبية MeSH: Graft Rejection*/diagnostic imaging , Kidney Transplantation* , Elasticity Imaging Techniques*/methods, Humans ; Male ; Middle Aged ; Female ; Adult ; Retrospective Studies ; Biopsy ; Kidney/diagnostic imaging ; Kidney/pathology ; Allografts ; Predictive Value of Tests
مستخلص: Objectives: To evaluate the role of shear-wave dispersion slope for predicting renal allograft dysfunction.
Methods: We retrospectively reviewed 128 kidney transplant recipients (median age, 55 years [interquartile range, 43-62 years]; male, 68) who underwent biopsy for allograft evaluation from November 2022 to February 2023. Cortex and renal sinus fat stiffness and shear-wave dispersion slope were obtained at shear-wave elastography (SWE). Cortex-to-sinus stiffness ratio (SR) and dispersion slope ratio (DSR)-related clinical and pathologic factors were evaluated using multivariable linear regression analysis. We conducted univariate and multivariate analyses for multiparametric ultrasound (US) parameters for identifying acute rejection and calculated the area under the receiver operating curve (AUC) values.
Results: Of 128 patients, 31 (24.2%) demonstrated acute rejection. The SR value did not differ between patient groups (1.21 vs. 1.20, p = 0.47). Patients with acute rejection demonstrated a higher DSR than those without rejection (1.4 vs. 1.21, p < 0.01). Interstitial fibrosis and tubular atrophy grade (IFTA; coefficient, 0.11/grade; p = 0.04) and renal transplant and biopsy interval (coefficient, 0.00007/day; p = 0.03) were SR determinant factors, whereas only IFTA grade (coefficient, 0.10/grade; p = 0.01) for DSR. Multivariate analysis revealed mean resistive index (odds ratio [OR] 1.08, 95% confidence interval [CI] 1.02-1.14, p = 0.01) and DSR value (OR 16.0, 95% CI 3.0-85.8, p = 0.001) as independent factors for predicting acute rejection. An AUC of 0.74 for detecting acute rejection was achieved by combining the resistive index and DSR value.
Conclusion: Shear-wave dispersion slope obtained at SWE may help identify renal allograft dysfunction.
Clinical Relevance Statement: Acute rejection in renal allografts is a major cause of allograft failure, but noninvasive diagnosis is a challenge. Shear-wave dispersion slope can identify acute rejection non-invasively.
Key Points: • The interstitial fibrosis and tubular atrophy grade was a determinant factor for stiffness ratio and shear-wave dispersion slope ratio between cortex and renal sinus fat. • Shear-wave dispersion slope ratio between cortex and renal sinus fat could identify acute rejection in renal allografts. • A shear-wave dispersion slope has a potential to reduce unnecessary renal biopsy for evaluating renal allografts.
(© 2023. The Author(s), under exclusive licence to European Society of Radiology.)
References: Sellarés J, de Freitas DG, Mengel M et al (2012) Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant 12:388–399. https://doi.org/10.1111/j.1600-6143.2011.03840.x. (PMID: 10.1111/j.1600-6143.2011.03840.x22081892)
Yoo MG, Jung DC, Oh YT et al (2017) Usefulness of multiparametric ultrasound for evaluating structural abnormality of transplanted kidney: can we predict histologic abnormality on renal biopsy in advance? AJR Am J Roentgenol 209:W139–W144. https://doi.org/10.2214/AJR.16.17397. (PMID: 10.2214/AJR.16.17397)
Schwarz A, Gwinner W, Hiss M et al (2005) Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 5:1992–1996. https://doi.org/10.1111/j.1600-6143.2005.00988.x. (PMID: 10.1111/j.1600-6143.2005.00988.x15996250)
Chen S, Urban MW, Pislaru C, et al (2009) Liver elasticity and viscosity quantification using shearwave dispersion ultrasound vibrometry (SDUV). In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp 2252–2255.
Sugimoto K, Moriyasu F, Oshiro H et al (2018) Viscoelasticity measurement in rat livers using shear-wave US elastography. Ultrasound Med Biol 44:2018–2024. https://doi.org/10.1016/j.ultrasmedbio.2018.05.008. (PMID: 10.1016/j.ultrasmedbio.2018.05.00829936025)
Sugimoto K, Moriyasu F, Oshiro H, et al (2020) Clinical utilization of shear wave dispersion imaging in diffuse liver disease. Ultrasonography 39:3–10. https://doi.org/10.14366/usg.19031.
Lee DH, Lee JY, Bae JS et al (2019) Shear-wave dispersion slope from US shear-wave elastography: detection of allograft damage after liver transplantation. Radiology 293:327–333. https://doi.org/10.1148/radiol.2019190064. (PMID: 10.1148/radiol.201919006431502939)
Jeong HJ (2020) Diagnosis of renal transplant rejection: Banff classification and beyond. Kidney Res Clin Pract 39:17–31. https://doi.org/10.23876/j.krcp.20.003.
Barr RG, Wilson SR, Rubens D et al (2020) Update to the Society of Radiologists in Ultrasound Liver elastography consensus statement. Radiology 296:263–274. https://doi.org/10.1148/radiol.2020192437. (PMID: 10.1148/radiol.202019243732515681)
Gennisson J-L, Grenier N, Combe C, Tanter M (2012) Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol 38:1559–1567. https://doi.org/10.1016/j.ultrasmedbio.2012.04.013. (PMID: 10.1016/j.ultrasmedbio.2012.04.01322698515)
Shiina T, Nightingale KR, Palmeri ML et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol 41:1126–1147. https://doi.org/10.1016/j.ultrasmedbio.2015.03.009. (PMID: 10.1016/j.ultrasmedbio.2015.03.00925805059)
Dietrich CF, Bamber J, Berzigotti A et al (2017) EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (long version). Ultraschall Med 38:e16–e47. https://doi.org/10.1055/s-0043-103952. (PMID: 10.1055/s-0043-103952)
Tublin ME, Bude RO, Platt JF (2003) The resistive index in renal Doppler sonography: where do we stand? AJR Am J Roentgenol 180:885–892. https://doi.org/10.2214/ajr.180.4.1800885. (PMID: 10.2214/ajr.180.4.1800885)
Syversveen T, Brabrand K, Midtvedt K et al (2011) Assessment of renal allograft fibrosis by acoustic radiation force impulse quantification – a pilot study. Transpl Int 24:100–105. https://doi.org/10.1111/j.1432-2277.2010.01165.x. (PMID: 10.1111/j.1432-2277.2010.01165.x20819192)
Iyama T, Sugihara T, Takata T, Isomoto H (2021) Renal ultrasound elastography: a review of the previous reports on chronic kidney diseases. Appl Sci 11:9677. https://doi.org/10.3390/app11209677. (PMID: 10.3390/app11209677)
Amador C, Urban MW, Chen S, Greenleaf JF (2011) Shearwave dispersion ultrasound vibrometry (SDUV) on swine kidney. IEEE Trans Ultrason Ferroelectr Freq Control 58:2608–2619. https://doi.org/10.1109/TUFFC.2011.2124. (PMID: 10.1109/TUFFC.2011.2124234436973588601)
Selzo MR, Moore CJ, Hossain MdM et al (2016) On the quantitative potential of viscoelastic response (VisR) ultrasound using the one-dimensional mass-spring-damper model. IEEE Trans Ultrason Ferroelectr Freq Control 63:1276–1287. https://doi.org/10.1109/TUFFC.2016.2539323. (PMID: 10.1109/TUFFC.2016.2539323270468485016215)
Zhao X, Pelegri AA (2014) Modeling dynamic responses of viscoelastic heterogeneous soft tissues to step acoustic radiation force. In: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, vol 3B: Biomedical and Biotechnology Engineering. V03BT03A061. https://doi.org/10.1115/IMECE2013-66109.
Hossain MM, Selzo MR, Hinson RM et al (2018) Evaluating renal transplant status using viscoelastic response (VisR) ultrasound. Ultrasound Med Biol 44:1573–1584. https://doi.org/10.1016/j.ultrasmedbio.2018.03.016. (PMID: 10.1016/j.ultrasmedbio.2018.03.016297547026026561)
Lee ES, Lee JB, Park HR et al (2017) Shear wave liver elastography with a propagation map: diagnostic performance and inter-observer correlation for hepatic fibrosis in chronic hepatitis. Ultrasound Med Biol 43:1355–1363. https://doi.org/10.1016/j.ultrasmedbio.2017.02.010. (PMID: 10.1016/j.ultrasmedbio.2017.02.01028431795)
Roufosse C, Simmonds N, Clahsen-van Groningen M et al (2018) A 2018 reference guide to the Banff classification of renal allograft pathology. Transplantation 102:1795. https://doi.org/10.1097/TP.0000000000002366. (PMID: 10.1097/TP.0000000000002366300287867597974)
Hwang J, Kim HW, Kim PH et al (2021) Technical performance of acoustic radiation force impulse imaging for measuring renal parenchymal stiffness: a systematic review and meta-analysis. J Ultrasound Med 40:2639–2653. https://doi.org/10.1002/jum.15654. (PMID: 10.1002/jum.1565433599306)
Maralescu F-M, Chiodan M, Sircuta A et al (2022) Are the currently available elastography methods useful in the assessment of chronic kidney disease? A systematic review and a meta-analysis. Appl Sci 12:2359. https://doi.org/10.3390/app12052359. (PMID: 10.3390/app12052359)
Stock KF, Klein BS, Vo Cong MT et al (2010) ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin Hemorheol Microcirc 46:139–148. https://doi.org/10.3233/CH-2010-1340. (PMID: 10.3233/CH-2010-134021135489)
Makita A, Nagao T, Miyoshi K-I et al (2021) The association between renal elasticity evaluated by real-time tissue elastography and renal fibrosis. Clin Exp Nephrol 25:981–987. https://doi.org/10.1007/s10157-021-02063-2. (PMID: 10.1007/s10157-021-02063-233963937)
Wang L, Xia P, Lv K et al (2014) Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: preliminary experience in chronic kidney disease. Eur Radiol 24:1694–1699. https://doi.org/10.1007/s00330-014-3162-5. (PMID: 10.1007/s00330-014-3162-524744199)
Ries M, Jones RA, Basseau F et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49. https://doi.org/10.1002/jmri.1149. (PMID: 10.1002/jmri.114911436213)
Ghonge NP, Mohan M, Kashyap V, Jasuja S (2018) Renal allograft dysfunction: evaluation with shear-wave sonoelastography. Radiology 288:146–152. https://doi.org/10.1148/radiol.2018170577. (PMID: 10.1148/radiol.201817057729634441)
Maralescu F-M, Bende F, Sporea I et al (2022) Assessment of renal allograft stiffness and viscosity using 2D SWE PLUS and Vi PLUS measures—a pilot study. J Clin Med 11:4370. https://doi.org/10.3390/jcm11154370. (PMID: 10.3390/jcm11154370359559859369292)
Grenier N, Poulain S, Lepreux S et al (2012) Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol 22:2138–2146. https://doi.org/10.1007/s00330-012-2471-9. (PMID: 10.1007/s00330-012-2471-922588518)
Boor P, Floege J (2015) Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 15:863–886. https://doi.org/10.1111/ajt.13180. (PMID: 10.1111/ajt.1318025691290)
Asano K, Ogata A, Tanaka K et al (2014) Acoustic radiation force impulse elastography of the kidneys. J Ultrasound Med 33:793–801. https://doi.org/10.7863/ultra.33.5.793. (PMID: 10.7863/ultra.33.5.79324764334)
Bob F, Bota S, Sporea I et al (2015) Relationship between the estimated glomerular filtration rate and kidney shear wave speed values assessed by acoustic radiation force impulse elastography. J Ultrasound Med 34:649–654. https://doi.org/10.7863/ultra.34.4.649. (PMID: 10.7863/ultra.34.4.64925792580)
Maralescu F-M, Vaduva A, Schiller A et al (2023) Relationship between novel elastography techniques and renal fibrosis—preliminary experience in patients with chronic glomerulonephritis. Biomedicines 11:365. https://doi.org/10.3390/biomedicines11020365. (PMID: 10.3390/biomedicines11020365368309019953735)
فهرسة مساهمة: Keywords: Acoustic radiation force impulse imaging; Graft rejection; Kidney transplantation; Sonoelastography; Viscosity
تواريخ الأحداث: Date Created: 20231213 Date Completed: 20240628 Latest Revision: 20240712
رمز التحديث: 20240712
DOI: 10.1007/s00330-023-10492-8
PMID: 38091056
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1084
DOI:10.1007/s00330-023-10492-8