دورية أكاديمية

An ex vitro hairy root system from petioles of detached soybean leaves for in planta screening of target genes and CRISPR strategies associated with nematode bioassays.

التفاصيل البيبلوغرافية
العنوان: An ex vitro hairy root system from petioles of detached soybean leaves for in planta screening of target genes and CRISPR strategies associated with nematode bioassays.
المؤلفون: Freitas-Alves NS; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil.; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Moreira-Pinto CE; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Arraes FBM; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Costa LSL; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., de Abreu RA; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil., Moreira VJV; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Lourenço-Tessutti IT; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Pinheiro DH; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Lisei-de-Sa ME; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Paes-de-Melo B; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Pereira BM; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil., Guimaraes PM; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Brasileiro ACM; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., de Almeida-Engler J; INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, ISA, France.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Soccol CR; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil., Morgante CV; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; Embrapa Semiarid, Petrolina, PE, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Basso MF; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil., Grossi-de-Sa MF; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil. fatima.grossi@embrapa.br.; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil. fatima.grossi@embrapa.br.; Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil. fatima.grossi@embrapa.br.; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil. fatima.grossi@embrapa.br.; Catholic University of Brasília, Brasília, DF, Brazil. fatima.grossi@embrapa.br.
المصدر: Planta [Planta] 2023 Dec 18; Vol. 259 (1), pp. 23. Date of Electronic Publication: 2023 Dec 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag [etc.] Country of Publication: Germany NLM ID: 1250576 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2048 (Electronic) Linking ISSN: 00320935 NLM ISO Abbreviation: Planta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag [etc.]
مواضيع طبية MeSH: Glycine max*/genetics , Nematoda*/genetics, Animals ; RNA, Guide, CRISPR-Cas Systems ; Biological Assay ; Cotyledon
مستخلص: Main Conclusion: The ex vitro hairy root system from petioles of detached soybean leaves allows the functional validation of genes using classical transgenesis and CRISPR strategies (e.g., sgRNA validation, gene activation) associated with nematode bioassays. Agrobacterium rhizogenes-mediated root transformation has been widely used in soybean for the functional validation of target genes in classical transgenesis and single-guide RNA (sgRNA) in CRISPR-based technologies. Initial data showed that in vitro hairy root induction from soybean cotyledons and hypocotyls were not the most suitable strategies for simultaneous performing genetic studies and nematode bioassays. Therefore, an ex vitro hairy root system was developed for in planta screening of target molecules during soybean parasitism by root-knot nematodes (RKNs). Applying this method, hairy roots were successfully induced by A. rhizogenes from petioles of detached soybean leaves. The soybean GmPR10 and GmGST genes were then constitutively overexpressed in both soybean hairy roots and tobacco plants, showing a reduction in the number of Meloidogyne incognita-induced galls of up to 41% and 39%, respectively. In addition, this system was evaluated for upregulation of the endogenous GmExpA and GmExpLB genes by CRISPR/dCas9, showing high levels of gene activation and reductions in gall number of up to 58.7% and 67.4%, respectively. Furthermore, morphological and histological analyses of the galls were successfully performed. These collective data validate the ex vitro hairy root system for screening target genes, using classical overexpression and CRISPR approaches, directly in soybean in a simple manner and associated with nematode bioassays. This system can also be used in other root pathosystems for analyses of gene function and studies of parasite interactions with plants, as well as for other purposes such as studies of root biology and promoter characterization.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915. https://doi.org/10.1038/nbt.1482. (PMID: 10.1038/nbt.148218660804)
Almeida-Engler J, Van Poucke K, Karimi M, De Groodt R, Gheysen G, Engler G, Gheysen G (2004) Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant J 38:12–26. https://doi.org/10.1111/j.1365-313X.2004.02019.x. (PMID: 10.1111/j.1365-313X.2004.02019.x15053756)
Andrade LBS, Oliveira AS, Ribeiro JK, Kiyota S, Vasconcelos IM, de Oliveira JT, de Sales MP (2010) Effects of a novel pathogenesis-related class 10 (PR-10) protein from Crotalaria pallida roots with papain inhibitory activity against root-knot nematode Meloidogyne incognita. J Agric Food Chem 58:4145–4152. https://doi.org/10.1021/jf9044556. (PMID: 10.1021/jf904455620199085)
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M et al (2022) Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and Meloidogyne incognita interactions. Plants 11:1–38. https://doi.org/10.3390/plants11202744. (PMID: 10.3390/plants11202744)
Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, Liu B, Sun J, Yang M, Yang L, Wang D, Song S, Guan Y (2020) Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J 18:721–731. https://doi.org/10.1111/pbi.13239. (PMID: 10.1111/pbi.1323931452351)
Banora MY, Rodiuc N, Baldacci-Cresp F, Smertenko A, Bleve-Zacheo T, Mellilo MT, Karimi M, Hilson P, Evrard JL, Favery B, Engler G, Abad P, Almeida-Engler J (2011) Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization. PLoS Pathog 7:1–16. https://doi.org/10.1371/journal.ppat.1002343. (PMID: 10.1371/journal.ppat.1002343)
Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, Grossi-de-Sa MF (2019) MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J 17:1482–1500. https://doi.org/10.1111/pbi.13116. (PMID: 10.1111/pbi.13116309473986662102)
Basso MF, Lourenço-Tessutti IT, Mendes RAG, Pinto CEM, Bournaud C, Gillet FX, Togawa RC, de Macedo LLP, de Almeida EJ, Grossi-de-Sa MF (2020a) MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Sci Rep 10:6991. https://doi.org/10.1038/s41598-020-63968-8. (PMID: 10.1038/s41598-020-63968-8323329047181638)
Basso MF, Arraes FBM, Grossi-de-Sa M, Moreira VJV, Alves-Ferreira M, Grossi-de-Sa MF (2020b) Insights Into genetic and molecular elements for transgenic crop development. Front Plant Sci 11:509. https://doi.org/10.3389/fpls.2020.00509. (PMID: 10.3389/fpls.2020.00509324997967243915)
Basso MF, Lourenço-Tessutti IT, Moreira-Pinto CE, Mendes RAG, Paes-de-Melo B et al (2022a) Overexpression of a soybean Globin (GmGlb1-1) gene reduces plant susceptibility to Meloidogyne incognita. Planta 256:1–16. https://doi.org/10.1007/s00425-022-03992-2. (PMID: 10.1007/s00425-022-03992-2)
Basso MF, Lourenço-Tessutti IT, Moreira-Pinto CE, Mendes RAG, Pereira DG et al (2022b) Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita. Plant Cell Rep 42:137–152. https://doi.org/10.1007/s00299-022-02941-3. (PMID: 10.1007/s00299-022-02941-336348064)
Brasileiro ACM, Lacorte C, Pereira BM, Oliveira TN, Ferreira DS, Mota APZ, Saraiva MAP, Araujo ACG, Silva LP, Guimaraes PM (2021) Ectopic expression of an expansin-like B gene from wild Arachis enhances tolerance to both abiotic and biotic stresses. Plant J 107:1681–1696. https://doi.org/10.1111/tpj.15409. (PMID: 10.1111/tpj.1540934231270)
Cao D, Hou W, Song S, Sun H, Wu C, Gao Y, Han T (2009) Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell Tiss Organ Cult 96:45–52. https://doi.org/10.1007/s11240-008-9458-x. (PMID: 10.1007/s11240-008-9458-x)
Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415. https://doi.org/10.1007/s10529-011-0785-3. (PMID: 10.1007/s10529-011-0785-322048847)
Chen L, Cai Y, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. Crop J 6:162–171. https://doi.org/10.1016/j.cj.2017.08.006. (PMID: 10.1016/j.cj.2017.08.006)
Cheng Y, Wang X, Cao L, Ji J, Liu T, Duan K (2021) Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods 17:1–13. https://doi.org/10.1186/s13007-021-00778-7. (PMID: 10.1186/s13007-021-00778-7)
Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434. https://doi.org/10.1038/295432a0. (PMID: 10.1038/295432a0)
Cho HJ, Farrand SK, Noel GR, Widholm JM (2000) High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204. https://doi.org/10.1007/PL00008126. (PMID: 10.1007/PL0000812610664125)
Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172. https://doi.org/10.1016/j.pbi.2015.05.014. (PMID: 10.1016/j.pbi.2015.05.014260570894532548)
Dias-Arieira CR, Ceccato FJ, Marinelli EZ, Vecchi JLB, Arieira GO, Santana-Gomes SM (2021) Correlations between nematode numbers, chemical and physical soil properties, and soybean yield under different cropping systems. Rhizosphere 19:1–7. https://doi.org/10.1016/j.rhisph.2021.100386. (PMID: 10.1016/j.rhisph.2021.100386)
Elhady A, Heuer H, Hallmann J (2018) Plant parasitic nematodes on soybean in expanding production areas of temperate regions. J Plant Dis Prot 125:567–576. https://doi.org/10.1007/s41348-018-0188-y. (PMID: 10.1007/s41348-018-0188-y)
Escobar C, Barcala M, Cabrera J, Fenoll C (2015) Overview of root-knot nematodes and giant cells. In: Escobar C, Fenoll C (eds) Advances in botanical research, 73rd edn. Elsevier Ltd, pp 1–32.
Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE, Guillén G, Díaz-Camino C, Campos F, Quinto C, Gresshoff PM, Sanchez F (2007) Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat Protoc 2:1819–1824. https://doi.org/10.1038/nprot.2007.259. (PMID: 10.1038/nprot.2007.25917641650)
Fan YL, Zhang XH, Zhong LJ, Wang XY, Jin LS, Lyu SH (2020) One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC Plant Biol 20:208. https://doi.org/10.1186/s12870-020-02421-4. (PMID: 10.1186/s12870-020-02421-4323979587333419)
Fragoso RR, Arraes FBM, Lourenço-Tessutti IT, Miranda VJ, Basso MF et al (2022) Functional characterization of the pUceS8.3 promoter and its potential use for ectopic gene overexpression. Planta 256:69. https://doi.org/10.1007/s00425-022-03980-6. (PMID: 10.1007/s00425-022-03980-636066773)
Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676. https://doi.org/10.1104/pp.109.139873. (PMID: 10.1104/pp.109.139873194395692719113)
Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537. https://doi.org/10.1016/j.tibtech.2012.07.001. (PMID: 10.1016/j.tibtech.2012.07.00122906523)
Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409. https://doi.org/10.1016/j.tibtech.2006.07.002. (PMID: 10.1016/j.tibtech.2006.07.00216870285)
Guimaraes LA, Mota APZ, Araujo ACG, de Alencar Figueiredo LF, Pereira BM, de Passos Saraiva MA, Silva RB, Danchin EGJ, Guimaraes PM, Brasileiro ACM (2017a) Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. Plant Mol Biol 94:79–96. https://doi.org/10.1007/s11103-017-0594-8. (PMID: 10.1007/s11103-017-0594-8282438415437183)
Guimaraes LA, Pereira BM, Araujo ACG, Guimaraes PM, Brasileiro ACM (2017b) Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies. Plant Methods 13:1–10. https://doi.org/10.1186/s13007-017-0176-4. (PMID: 10.1186/s13007-017-0176-4)
Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F (2020) Hairy root cultures—a versatile tool with multiple applications. Front Plant Sci 11:33. https://doi.org/10.3389/fpls.2020.00033. (PMID: 10.3389/fpls.2020.00033321945787064051)
Häkkinen ST, Oksman-Caldentey K-M (2018) Progress and prospects of hairy root research. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy roots: an effective tool of plant biotechnology. Springer Nature, Singapore, pp 3–19. (PMID: 10.1007/978-981-13-2562-5_1)
Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A (2006) A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2:19. https://doi.org/10.1186/1746-4811-2-19. (PMID: 10.1186/1746-4811-2-19170878291636043)
Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP, Stupar RM (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155:645–655. https://doi.org/10.1104/pp.110.166736. (PMID: 10.1104/pp.110.16673621115807)
Heenatigala PPM, Yang J, Bishopp A, Sun Z, Li G, Kumar S, Hu S, Wu Z, Lin W, Yao L, Duan P, Hou H (2018) Development of efficient protocols for stable and transient gene transformation for Wolffia globosa using Agrobacterium. Front Chem 6:1–10. https://doi.org/10.3389/fchem.2018.00227. (PMID: 10.3389/fchem.2018.00227)
Homrich MS, Wiebke-Strohm B, Weber RLM, Bodanese-Zanettini MH (2012) Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants. Genet Mol Biol 35:998–1010. https://doi.org/10.1590/S1415-47572012000600015. (PMID: 10.1590/S1415-47572012000600015234128493571417)
Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. https://doi.org/10.1126/science.227.4691.1229. (PMID: 10.1126/science.227.4691.1229)
Kereszt A, Li D, Indrasumunar A, Nguyen CD, Nontachaiyapoom S, Kinkema M, Gresshoff PM (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948–952. https://doi.org/10.1038/nprot.2007.141. (PMID: 10.1038/nprot.2007.14117446894)
Kim H, Choi J (2020) A robust and practical CRISPR/crRNA screening system for soybean cultivar editing using LbCpf1 ribonucleoproteins. Plant Cell Rep 40:1059–1070. https://doi.org/10.1007/s00299-020-02597-x. (PMID: 10.1007/s00299-020-02597-x32945949)
Kruger GR, Xing L, LeRoy AR, Westphal A (2008) Meloidogyne incognita resistance in soybean under midwest conditions. Crop Sci 48:716–726. https://doi.org/10.2135/cropsci2007.04.0196. (PMID: 10.2135/cropsci2007.04.0196)
Kyndt T, Fernandez D, Gheysen G (2014) Plant-parasitic nematode infections in rice: molecular and cellular insights. Annu Rev Phytopathol 52:135–153. https://doi.org/10.1146/annurev-phyto-102313-050111. (PMID: 10.1146/annurev-phyto-102313-05011124906129)
Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496. https://doi.org/10.1093/mp/ssu044. (PMID: 10.1093/mp/ssu04424719468)
Li C, Nguyen V, Liu J, Fu W, Chen C, Yu K, Cui Y (2019) Mutagenesis of seed storage protein genes in soybean using CRISPR/Cas9. BMC Res Notes 12:1–7. https://doi.org/10.1186/s13104-019-4207-2. (PMID: 10.1186/s13104-019-4207-2)
Lima FSO, Correa VR, Nogueira SR, Santos PRR (2017) Nematodes affecting soybean and sustainable practices for their management. In: Kasai M (ed) Soybean—the basis of yield, biomass and productivity, 1st edn. InTechOpen, pp 96–110.
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A et al (2022) Breeding for disease resistance in soybean: a global perspective. Theor Appl Genet 135:3773–3872. https://doi.org/10.1007/s00122-022-04101-3. (PMID: 10.1007/s00122-022-04101-3357905439729162)
Lin J, Monsalvo I, Ly M, Jahan MA, Wi D, Martirosyan I, Kovinich N (2023) RNA-Seq dissects incomplete activation of phytoalexin biosynthesis by the soybean transcription factors GmMYB29A2 and GmNAC42-1. Plants 12:545. https://doi.org/10.3390/plants12030545. (PMID: 10.3390/plants12030545367716299921300)
Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260. https://doi.org/10.1038/nature11651. (PMID: 10.1038/nature1165123235880)
Liu J, Gunapati S, Mihelich NT, Stec AO, Michno JM, Stupar RM (2019) Genome editing in soybean with CRISPR/Cas9. Methods Mol Biol 1917:217–234. https://doi.org/10.1007/978-1-4939-8991-1_16. (PMID: 10.1007/978-1-4939-8991-1_1630610639)
Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol Plant 11:245–256. https://doi.org/10.1016/j.molp.2017.11.010. (PMID: 10.1016/j.molp.2017.11.01029197638)
Lozovaya VV, Lygin AV, Zernova OV, Ulanov AV, Li S, Hartman GL, Widholm JM (2007) Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta 225:665–679. https://doi.org/10.1007/s00425-006-0368-z. (PMID: 10.1007/s00425-006-0368-z16924535)
Mazarei M, Ying Z, Houtz RL (1998) Functional analysis of the Rubisco large subunit (ε)N-methyltransferase promoter from tobacco and its regulation by light in soybean hairy roots. Plant Cell Rep 17:907–912. https://doi.org/10.1007/s002990050507. (PMID: 10.1007/s00299005050730736537)
Mendes RAG, Basso MF, Paes-de-Melo B, Ribeiro TP, Lima RN et al (2021a) The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita. Physiol Mol Plant Pathol 114:1–11. https://doi.org/10.1016/j.pmpp.2021.101630. (PMID: 10.1016/j.pmpp.2021.101630)
Mendes RAG, Basso MF, Fernandes de Araújo J, Paes de Melo B, Lima RN et al (2021b) Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M. javanica. Exp Parasitol 229:108153. https://doi.org/10.1016/j.exppara.2021.108153. (PMID: 10.1016/j.exppara.2021.108153)
Mendes RAG, Basso MF, Amora DX, Silva AP, Paes-de-Melo B, CoitiTogawa R, Saliba Albuquerque EV, Lisei-de-Sa ME, Lima Pepino Macedo L, Lourenço-Tessutti IT, Grossi-de-Sa MF (2022) In planta RNAi approach targeting three M. incognita effector genes disturbed the process of infection and reduced plant susceptibility. Exp Parasitol 238:108246. https://doi.org/10.1016/j.exppara.2022.108246. (PMID: 10.1016/j.exppara.2022.108246)
Miranda VJ, Coelho RR, Viana AA, de Oliveira Neto OB, Carneiro RM, Rocha TL, Grossi-de-Sa MF, Fragoso RR (2013) Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack. BMC Res Notes 6:196. https://doi.org/10.1186/1756-0500-6-196. (PMID: 10.1186/1756-0500-6-196236683153660166)
Moreira VJV, Lourenço-Tessutti IT, Basso MF, Lisei-de-Sa ME, Morgante CV, Paes-de-Melo B, Arraes FBM, Martins-de-Sa D, Silva MCM, Almeida-Engler J, Grossi-de-Sa MF (2022) Minc03328 effector gene downregulation severely affects Meloidogyne incognita parasitism in transgenic Arabidopsis thaliana. Planta 255:44. https://doi.org/10.1007/s00425-022-03823-4. (PMID: 10.1007/s00425-022-03823-435050413)
Moreira VJV, Pinheiro DH, Lourenço-Tessutti IT, Basso MF, Lisei-de-Sa ME, Silva MCM, Danchin EGJ, Guimaraes PM, Grynberg P, Brasileiro ACM, Macedo LLP, Morgante CV, Almeida-Engler J, Grossi-de-Sa MF (2023) In planta RNAi targeting Meloidogyne incognita Minc16803 gene perturbs nematode parasitism and reduces plant susceptibility. J Pest Sci. https://doi.org/10.1007/s10340-023-01623-7. (PMID: 10.1007/s10340-023-01623-7)
Morris JS, Caldo KMP, Liang S, Facchini PJ (2021) PR10/BetV1-like proteins as novel contributors to plant biochemical diversity. ChemBioChem 22:264–287. https://doi.org/10.1002/cbic.202000354. (PMID: 10.1002/cbic.20200035432700448)
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x. (PMID: 10.1111/j.1399-3054.1962.tb08052.x)
Niazian M, Belzile F, Torkamaneh D (2022) CRISPR/Cas9 in planta hairy root transformation: a powerful platform for functional analysis of root traits in soybean. Plants 11:1044. https://doi.org/10.3390/plants11081044. (PMID: 10.3390/plants11081044354487729027312)
Paes-de-Melo B, Lourenço-Tessutti IT, Morgante CV, Santos NC, Pinheiro LB, de Jesus Lins CB, Silva MCM, Macedo LLP, Fontes EPB, Grossi-de-Sa MF (2020) Soybean embryonic axis transformation: combining biolistic and agrobacterium-mediated protocols to overcome typical complications of in vitro plant regeneration. Front Plant Sci 11:1228. https://doi.org/10.3389/fpls.2020.01228. (PMID: 10.3389/fpls.2020.01228329034237434976)
Pagano MC, Miransari M (2016) The importance of soybean production worldwide. In: Miransari M (ed) Abiotic and biotic stresses in soybean production, 1st edn. Elsevier Inc., pp 1–26.
Pereira BM, Arraes FBM, Martins ACQ, Alves NSF, Paes-de-Melo B, Morgante CV, Saraiva MAP, Grossi-de-Sa MF, Guimaraes PM, Brasileiro ACM (2023) A novel soybean hairy root system for gene functional validation. PLoS One 18:e0285504. https://doi.org/10.1371/journal.pone.0285504. (PMID: 10.1371/journal.pone.02855043720036510194865)
Rancurel C, van Tran T, Elie C, Hilliou F (2019) SATQPCR: website for statistical analysis of real-time quantitative PCR data. Mol Cell Probes 46:1–2. https://doi.org/10.1016/j.mcp.2019.07.001. (PMID: 10.1016/j.mcp.2019.07.001)
Sato K, Kadota Y, Shirasu K (2019) Plant immune responses to parasitic nematodes. Front Plant Sci 10:1165. https://doi.org/10.3389/fpls.2019.01165. (PMID: 10.3389/fpls.2019.01165316164536775239)
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73. (PMID: 10.1038/nprot.2008.7318546601)
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670. (PMID: 10.1038/nature0867020075913)
Shahbandeh M (2023) Soybean production worldwide 2012/13–2021/22, by country. In: Statista. https://www.statista.com/statistics/263926/soybean-production-in-selected-countries-since-1980/ . Accessed 12 Dec 2022.
Song J, Tóth K, Montes-Luz B, Stacey G (2021) Soybean hairy root transformation: a rapid and highly efficient method. Curr Prot 1:1–13. https://doi.org/10.1002/cpz1.195. (PMID: 10.1002/cpz1.195)
Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342. https://doi.org/10.1038/srep10342. (PMID: 10.1038/srep10342260221414448504)
Warmerdam S, Sterken MG, van Schaik C, Oortwijn MEP, Sukarta OCA, Lozano-Torres JL, Dicke M, Helder J, Kammenga JE, Goverse A, Bakker J, Smant G (2018) Genome-wide association mapping of the architecture of susceptibility to the root-knot nematode Meloidogyne incognita in Arabidopsis thaliana. New Phytol 218:724–737. https://doi.org/10.1111/nph.15034. (PMID: 10.1111/nph.15034294686876079644)
Weber RLM, Bodanese-Zanettini MH (2011) Induction of transgenic hairy roots in soybean genotypes by Agrobacterium rhizogenes-mediated transformation. Pesq Agropec Bras 46:1070–1075. https://doi.org/10.1590/s0100-204x2011000900014. (PMID: 10.1590/s0100-204x2011000900014)
Xu TF, Zhao XC, Jiao YT, Wei JY, Wang L, Xu Y (2014) A pathogenesis related protein, VpPR-10.1, from Vitis pseudoreticulata: an insight of its mode of antifungal activity. PLoS ONE 9:e95102. https://doi.org/10.1371/journal.pone.0095102. (PMID: 10.1371/journal.pone.0095102247598053997386)
Yang R, Li S, Yang X, Zhu X, Fan H, Xuan Y, Chen L, Liu X, Wang Y, Duan Y (2021) Fluorescent soybean hairy root construction and its application in the soybean-nematode interaction: an investigation. Biology 10:1353. https://doi.org/10.3390/biology10121353. (PMID: 10.3390/biology10121353349432698699024)
Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada HA et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103. https://doi.org/10.1099/00207713-51-1-89. (PMID: 10.1099/00207713-51-1-8911211278)
Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064. https://doi.org/10.1089/cmb.2005.12.1047. (PMID: 10.1089/cmb.2005.12.104716241897)
معلومات مُعتمدة: Project Sv.922/18 Cofecub
فهرسة مساهمة: Keywords: Agrobacterium rhizogenes; CRISPR/dCas9; Glycine max; Meloidogyne incognita; Plant genetic transformation; Single-guide RNA validation
المشرفين على المادة: 0 (RNA, Guide, CRISPR-Cas Systems)
تواريخ الأحداث: Date Created: 20231218 Date Completed: 20231219 Latest Revision: 20240103
رمز التحديث: 20240104
DOI: 10.1007/s00425-023-04286-x
PMID: 38108903
قاعدة البيانات: MEDLINE