دورية أكاديمية

Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy.

التفاصيل البيبلوغرافية
العنوان: Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy.
المؤلفون: Gress AR; Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA.; Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA., Ronayne CE; Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA.; Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA., Thiede JM; Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA.; Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA., Meyerholz DK; Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, 1165 Medical Laboratories (ML), 51 Newton Rd, University of Iowa, Iowa City, IA, 52242, USA., Okurut S; Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda., Stumpf J; Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA., Mathes TV; Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA.; Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA., Ssebambulidde K; Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda., Meya DB; Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda., Cresswell FV; Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda.; MRC/UVRI and London School of Hygiene and Tropical Medicine Uganda Research Unit, PO Box 49, Plot 51-59, Nakiwogo Road Entebbe, Entebbe, Uganda.; Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, East Sussex, BN1 9PX, UK., Boulware DR; Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA., Bold TD; Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA. tbold@umn.edu.; Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA. tbold@umn.edu.
المصدر: Nature communications [Nat Commun] 2023 Dec 19; Vol. 14 (1), pp. 8423. Date of Electronic Publication: 2023 Dec 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: CD4-Positive T-Lymphocytes* , Tuberculosis*/therapy, Humans ; Mice ; Animals ; Receptors, OX40/agonists ; CD8-Positive T-Lymphocytes ; Immunotherapy
مستخلص: After Mycobacterium tuberculosis (Mtb) infection, many effector T cells traffic to the lungs, but few become activated. Here we use an antigen receptor reporter mouse (Nur77-GFP) to identify recently activated CD4 T cells in the lungs. These Nur77-GFP HI cells contain expanded TCR clonotypes, have elevated expression of co-stimulatory genes such as Tnfrsf4/OX40, and are functionally more protective than Nur77-GFP LO cells. By contrast, Nur77-GFP LO cells express markers of terminal exhaustion and cytotoxicity, and the trafficking receptor S1pr5, associated with vascular localization. A short course of immunotherapy targeting OX40 + cells transiently expands CD4 T cell numbers and shifts their phenotype towards parenchymal protective cells. Moreover, OX40 agonist immunotherapy decreases the lung bacterial burden and extends host survival, offering an additive benefit to antibiotics. CD4 T cells from the cerebrospinal fluid of humans with HIV-associated tuberculous meningitis commonly express surface OX40 protein, while CD8 T cells do not. Our data thus propose OX40 as a marker of recently activated CD4 T cells at the infection site and a potential target for immunotherapy in tuberculosis.
(© 2023. The Author(s).)
References: World Health Organization. GLOBAL TUBERCULOSIS REPORT 2021. (2021).
Dartois, V. A. & Rubin, E. J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol. 20, 685–701 (2022). (PMID: 10.1038/s41579-022-00731-y354782229045034)
Leveton, C. et al. T-Cell-Mediated Protection of Mice against Virulent Mycobacterium tuberculosis. Infect. Immun. 57, 390–395 (1989). (PMID: 10.1128/iai.57.2.390-395.19892492259313109)
Mogues, T., Goodrich, M. E., Ryan, L., LaCourse, R. & North, R. J. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med. 193, 271–280 (2001). (PMID: 10.1084/jem.193.3.271111570482195922)
Chamie, G. et al. Significant variation in presentation of pulmonary tuberculosis across a high resolution of CD4 strata. Int. J. Tuberc. Lung Dis. 14, 1295–1302 (2010). (PMID: 20843421)
Bold, T. D., Banaei, N., Wolf, A. J. & Ernst, J. D. Suboptimal activation of antigen-specific cD4+ effector cells enables persistence of M. tuberculosis in vivo. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002063 (2011).
Bold, T. D. & Ernst, J. D. CD4 + T Cell-Dependent IFN-γ Production by CD8 + Effector T Cells in Mycobacterium tuberculosis Infection. J. Immunol. https://doi.org/10.4049/jimmunol.1200994 (2012).
Sallin, M. A. et al. Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4 T Cells during Tuberculosis. Cell Rep. https://doi.org/10.1016/j.celrep.2017.03.007 (2017).
Reiley, W. W. et al. Distinct functions of antigen-specific CD4 T cells during murine Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. Usa. 107, 19408–19413 (2010). (PMID: 10.1073/pnas.1006298107209622772984157)
Filipe-Santos, O. et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin. Immunol. 18, 347–361 (2006). (PMID: 10.1016/j.smim.2006.07.01016997570)
Green, A. M., DiFazio, R. & Flynn, J. L. IFN-γ from CD4 T Cells Is Essential for Host Survival and Enhances CD8 T Cell Function during Mycobacterium tuberculosis Infection. J. Immunol. 190, 270–277 (2013). (PMID: 10.4049/jimmunol.120006123233724)
Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. https://doi.org/10.1084/jem.20110308 (2011).
Barber, D. L., Mayer-Barber, K. D., Feng, C. G., Sharpe, A. H. & Sher, A. CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1–Mediated Inhibition. J. Immunol. 186, 1598–1607 (2011). (PMID: 10.4049/jimmunol.100330421172867)
Barber, D. L. et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci. Transl. Med. 11, eaat2702 (2019). (PMID: 10.1126/scitranslmed.aat2702306513207372940)
Lázár-Molnár, E. et al. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc. Natl Acad. Sci. Usa. 107, 13402–13407 (2010). (PMID: 10.1073/pnas.1007394107206249782922129)
Kauffman, K. D. et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci. Immunol. 6, eabf3861 (2021). (PMID: 10.1126/sciimmunol.abf3861334521078300572)
Moguche, A. O. et al. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis. Cell Host Microbe https://doi.org/10.1016/j.chom.2017.05.012 (2017).
Ernst, J. D., Cornelius, A., Desvignes, L., Tavs, J. & Norris, B. A. Limited Antimycobacterial Efficacy of Epitope Peptide Administration Despite Enhanced Antigen-Specific CD4 T-Cell Activation. J. Infect. Dis. 218, 1653–1662 (2018). (PMID: 10.1093/infdis/jiy142295480086173573)
Jayaraman, P. et al. TIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1005490 (2016).
Goldberg, M. F. et al. Salmonella Persist in Activated Macrophages in T Cell-Sparse Granulomas but Are Contained by Surrounding CXCR3 Ligand-Positioned Th1 Cells. Immunity 49, 1090–1102.e7 (2018). (PMID: 10.1016/j.immuni.2018.10.009305520216301113)
Sakai, S. et al. Control of Mycobacterium tuberculosis infection by a subset of lung parenchyma homing CD4 T cells. J. Immunol. 192, 2965 (2014). (PMID: 10.4049/jimmunol.140001924591367)
Barber, D. L. et al. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLOS Pathog. https://doi.org/10.1371/journal.ppat.1005667 (2016).
Booty, M. G. et al. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection. Sci. Rep. 6, 36720 (2016). (PMID: 10.1038/srep36720278192955098191)
Evrard, M. et al. Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. J. Exp. Med. 219, e20210116 (2022). (PMID: 10.1084/jem.2021011634677611)
Moon, J. J. et al. Tracking epitope-specific T cells. Nat. Protoc. https://doi.org/10.1038/nprot.2009.9 (2009).
Salek-Ardakani, S., Moutaftsi, M., Crotty, S., Sette, A. & Croft, M. OX40 drives protective vaccinia virus-specific CD8 T cells. J. Immunol. 181, 7969–7976 (2008). (PMID: 10.4049/jimmunol.181.11.796919017988)
Mousavi, S. F. et al. OX40 costimulatory signals potentiate the memory commitment of effector CD8+ T cells. J. Immunol. 181, 5990–6001 (2008). (PMID: 10.4049/jimmunol.181.9.599018941188)
Lee, S.-W. et al. Functional dichotomy between OX40 and 4-1BB in modulating effector CD8 T cell responses. J. Immunol. 177, 4464–4472 (2006). (PMID: 10.4049/jimmunol.177.7.446416982882)
Hendriks, J. et al. During viral infection of the respiratory tract, CD27, 4-1BB, and OX40 collectively determine formation of CD8+ memory T cells and their capacity for secondary expansion. J. Immunol. 175, 1665–1676 (2005). (PMID: 10.4049/jimmunol.175.3.166516034107)
Humphreys, I. R. et al. OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T Cells: A CD4-dependent mechanism. J. Immunol. 179, 2195–2202 (2007). (PMID: 10.4049/jimmunol.179.4.219517675479)
Rogers, P. R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15, 445–455 (2001). (PMID: 10.1016/S1074-7613(01)00191-111567634)
Weatherill, A. R., Maxwell, J. R., Takahashi, C., Weinberg, A. D. & Vella, A. T. OX40 ligation enhances cell cycle turnover of Ag-activated CD4 T cells in vivo. Cell. Immunol. 209, 63–75 (2001). (PMID: 10.1006/cimm.2001.178311414737)
Gramaglia, I. et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Immunol. 165, 3043–3050 (2000). (PMID: 10.4049/jimmunol.165.6.304310975814)
Zhang, H. et al. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci. Transl. Med. 13, eaba7308 (2021). (PMID: 10.1126/scitranslmed.aba730833504651)
Lindestam Arlehamn, C. S. et al. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1005760 (2016).
Jennings, E. et al. Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Rep. 33, 108328 (2020). (PMID: 10.1016/j.celrep.2020.108328331474497653457)
Spence, A. et al. Revealing the specificity of regulatory T cells in murine autoimmune diabetes. Proc. Natl. Acad. Sci. USA. 115, (2018).
Sekiya, T. et al. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat. Immunol. 14, 230–237 (2013). (PMID: 10.1038/ni.252023334790)
Reiss, S. et al. Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen-specific CD4 T cells. PLoS One https://doi.org/10.1371/journal.pone.0186998 (2017).
Sallin, M. A. et al. Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nature Microbiology https://doi.org/10.1038/s41564-018-0231-6 (2018).
Garber, K. Immune agonist antibodies face critical test. Nat. Rev. Drug Discov. 19, 3–5 (2020). (PMID: 10.1038/d41573-019-00214-531907434)
Duhen, R. et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat. Commun. 12, 1047 (2021). (PMID: 10.1038/s41467-021-21383-1335940757886909)
Li, W. et al. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12, 7264 (2021). (PMID: 10.1038/s41467-021-27434-x349071718671507)
Barham, M. S. et al. Activation-Induced Marker Expression Identifies Mycobacterium tuberculosis –Specific CD4 T Cells in a Cytokine-Independent Manner in HIV-Infected Individuals with Latent Tuberculosis. ImmunoHorizons 4, 573–584 (2020). (PMID: 10.4049/immunohorizons.200005133008839)
Snelgrove, R. J. et al. OX40 ligand fusion protein delivered simultaneously with the BCG vaccine provides superior protection against murine Mycobacterium tuberculosis infection. J. Infect. Dis. 205, 975–983 (2012). (PMID: 10.1093/infdis/jir868223152803282567)
McCambridge, A., Peikert, T., Van Keulen, V., Erskine, C. & Escalante, P. Flow cytometric immune profiling in a patient with culture-negative tuberculosis. Am. J. Respir. Crit. Care Med. 195, (2017).
Foreman, T. W. et al. CD30 co-stimulation drives differentiation of protective T cells during Mycobacterium tuberculosis infection. J. Exp. Med. 220, e20222090 (2023). (PMID: 10.1084/jem.202220903709729210130742)
Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020). (PMID: 10.1038/s41586-019-1817-8318941507015856)
Lu, Y. J. et al. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep. 36, 109696 (2021). (PMID: 10.1016/j.celrep.2021.109696345253668466141)
Sakai, S. et al. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1005667 (2016).
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). (PMID: 10.1016/j.cell.2021.04.048340621198238499)
Borcherding, N., Bormann, N. L. & Kraus, G. scRepertoire: An R-based toolkit for single-cell immune receptor analysis. F1000Research 9, 47 (2020). (PMID: 10.12688/f1000research.22139.1327890067400693)
León-Rivera, R., Morsey, B., Niu, M., Fox, H. S. & Berman, J. W. Interactions of Monocytes, HIV, and ART Identified by an Innovative scRNAseq Pipeline: Pathways to Reservoirs and HIV-Associated Comorbidities. MBio https://doi.org/10.1128/mBio.01037-20 (2020).
Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single-cell gene expression signals by kernel density estimation. Bioinformatics 37, 2485–2487 (2021). (PMID: 10.1093/bioinformatics/btab00333459785)
Meyerholz, D. K. & Beck, A. P. Principles and approaches for reproducible scoring of tissue stains in research. Lab Invest 98, 844–855 (2018). (PMID: 10.1038/s41374-018-0057-029849125)
Gress, A.R. et al. Activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy, Github, https://doi.org/10.5281/zenodo.10076323 (2023).
معلومات مُعتمدة: T32 AI007313 United States AI NIAID NIH HHS; L30 AI140336 United States AI NIAID NIH HHS; T32 HL007741 United States HL NHLBI NIH HHS; R01 AI162786 United States AI NIAID NIH HHS; R01 AI173780 United States AI NIAID NIH HHS; MR/S004963/1 United Kingdom MRC_ Medical Research Council; T32 AI055433 United States AI NIAID NIH HHS; K08 AI150425 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Receptors, OX40)
تواريخ الأحداث: Date Created: 20231218 Date Completed: 20231220 Latest Revision: 20240620
رمز التحديث: 20240620
مُعرف محوري في PubMed: PMC10728168
DOI: 10.1038/s41467-023-44152-8
PMID: 38110410
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-023-44152-8