دورية أكاديمية

The advances of E2A-PBX1 fusion in B-cell acute lymphoblastic Leukaemia.

التفاصيل البيبلوغرافية
العنوان: The advances of E2A-PBX1 fusion in B-cell acute lymphoblastic Leukaemia.
المؤلفون: Yang M; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China., Tang Y; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China., Zhu P; School of Pharmacy, Wannan Medical College, Wuhu, 241000, People's Republic of China., Lu H; The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China., Wan X; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China., Guo Q; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China., Xiao L; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China., Liu C; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China., Guo L; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China., Liu W; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China. wenjun_liu@swmu.edu.cn.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China. wenjun_liu@swmu.edu.cn., Yang Y; Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China. youyang091@swmu.edu.cn.; Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China. youyang091@swmu.edu.cn.; The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. youyang091@swmu.edu.cn.
المصدر: Annals of hematology [Ann Hematol] 2024 Sep; Vol. 103 (9), pp. 3385-3398. Date of Electronic Publication: 2023 Dec 27.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9107334 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0584 (Electronic) Linking ISSN: 09395555 NLM ISO Abbreviation: Ann Hematol Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer Verlag
Original Publication: Berlin ; New York : Springer International, c1991-
مواضيع طبية MeSH: Oncogene Proteins, Fusion*/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma*/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma*/therapy, Humans ; B-Lymphocytes/pathology ; B-Lymphocytes/metabolism ; Prognosis ; Pre-B-Cell Leukemia Transcription Factor 1/genetics ; Cell Differentiation ; Homeodomain Proteins
مستخلص: The E2A-PBX1 gene fusion is a common translocation in B-cell acute lymphoblastic leukaemia. Patients harbouring the E2A-PBX1 fusion gene typically exhibit an intermediate prognosis. Furthermore, minimal residual disease has unsatisfactory prognostic value in E2A-PBX1 B-cell acute lymphoblastic leukaemia. However, the mechanism of E2A-PBX1 in the occurrence and progression of B-cell acute lymphoblastic leukaemia is not well understood. Here, we mainly review the roles of E2A and PBX1 in the differentiation and development of B lymphocytes, the mechanism of E2A-PBX1 gene fusion in B-cell acute lymphoblastic leukaemia, and the potential therapeutic approaches.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Aspland SE, Bendall HH, Murre C (2001) The role of E2A-PBX1 in leukemogenesis. Oncogene 20:5708–5717. (PMID: 11607820)
Hunger SP (1996) Chromosomal translocations involving the E2A gene in acute lymphoblastic Leukemia: clinical features and molecular pathogenesis. Blood 87:1211–1224. (PMID: 8608207)
Inaba H, Teachey D, Annesley C, Batra S (2023) Jill Beck, Susan Colace. NCCN Guidelines Version 1.2024-Pediatric Acute Lymphoblastic Leukemia.
Bijal Shah RJ, Mattison (2023) Ramzi Abboud, Peter Abdelmessieh, Patricia Aoun, Burke P W. NCCN Guidelines Version 2.2023-Acute Lymphoblastic Leukemia.
Ferrando AA, Look AT (2000) Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic Leukemia. Semin Hematol 37:381–395. (PMID: 11071360)
Hong Y, Zhao X, Qin Y, Zhou S, Chang Y, Wang Y, Zhang X, Xu L, Huang X (2018) The prognostic role of E2A-PBX1 expression detected by real-time quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) in B cell acute lymphoblastic Leukemia after allogeneic hematopoietic stem cell transplantation. Ann Hematol 97:1547–1554. (PMID: 29705861)
Zhang J, Yang F, Qiu HY, Wu Q, Kong DQ, Zhou J, Han Y, Wu DP (2019) Anti-CD19 chimeric antigen receptors T cells for the treatment of relapsed or refractory E2A-PBX1 positive acute lymphoblastic Leukemia: report of three cases. Leuk Lymphoma 60:1454–1461. (PMID: 30714847)
Zhou B, Chu X, Tian H, Liu T, Liu H, Gao W, Chen S, Hu S, Wu D, Xu Y (2021) The clinical outcomes and genomic landscapes of acute lymphoblastic Leukemia patients with E2A-PBX1: a 10-year retrospective study. Am J Hematol 96:1461–1471. (PMID: 34406703)
Vinti L, Del Baldo G, Lodi M, Stocchi F, Cefalo MG, Pagliara D (2022) Poor prognosis of B-cell acute lymphoblastic Leukemia with TCF/PBX1 fusion gene and ovarian involvement at diagnosis: two case reports and review of the literature. Pediatr Blood Cancer 69:e29299. (PMID: 34411424)
Zhang H, Wan Y, Wang H, Cai J, Yu J, Hu S, Fang Y, Gao J, Jiang H, Yang M et al (2023) Prognostic factors of childhood acute lymphoblastic Leukemia with TCF3::PBX1 in CCCG-ALL-2015: a multicenter study. Cancer 129:1691–1703. (PMID: 36943767)
Pui CH, Thiel E (2009) Central Nervous System Disease in hematologic malignancies: historical perspective and practical applications. Semin Oncol 36:S2–s16. (PMID: 196606802805279)
Núñez-Enríquez JC, Mejía-Aranguré JM (2015) [Molecular biology and childhood Leukemia: E2A-PBX1 and central nervous system relapse]. Rev Med Inst Mex Seguro Soc 53(Suppl 3):S236–239. (PMID: 26509298)
Yen HJ, Chen SH, Chang TY, Yang CP, Lin DT, Hung IJ, Lin KH, Chen JS, Hsiao CC, Chang TT et al (2017) Pediatric acute lymphoblastic Leukemia with t(1;19)/TCF3-PBX1 in Taiwan. Pediatr Blood Cancer 64.
Eldfors S, Kuusanmäki H, Kontro M, Majumder MM, Parsons A, Edgren H, Pemovska T, Kallioniemi O, Wennerberg K, Gökbuget N et al (2017) Idelalisib sensitivity and mechanisms of Disease progression in relapsed TCF3-PBX1 acute lymphoblastic Leukemia. Leukemia 31:51–57. (PMID: 27461063)
Wei T, Chen XJ, Zhang LY, Zhang AL, Zhu XF (2020) [Clinical significance of minimal residual Disease in B-lineage acute lymphoblastic Leukemia pediatric patients with different fusion gene backgrounds]. Zhongguo Dang Dai Er Ke Za Zhi 22:1279–1285. (PMID: 33327998)
Pui CH, Pei D, Raimondi SC, Coustan-Smith E, Jeha S, Cheng C, Bowman WP, Sandlund JT, Ribeiro RC, Rubnitz JE et al (2017) Clinical impact of minimal residual Disease in children with different subtypes of acute lymphoblastic Leukemia treated with response-adapted therapy. Leukemia 31:333–339. (PMID: 27560110)
Greenbaum S, Zhuang Y (2002) Regulation of early lymphocyte development by E2A family proteins. Semin Immunol 14:405–414. (PMID: 12457613)
Murre C, Mccaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783. (PMID: 2493990)
Zhuang Y, Soriano P, Weintraub H (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79:875–884. (PMID: 8001124)
Aronheim A, Shiran R, Rosen A, Walker MD (1993) The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc Natl Acad Sci U S A 90:8063–8067. (PMID: 836746447288)
Belle I, Zhuang Y (2014) E proteins in lymphocyte development and lymphoid Diseases. Curr Top Dev Biol 110:153–187. (PMID: 252484766504980)
Liang JJ, Peng H, Wang JJ, Liu XH, Ma L, Ni YR, Yang HJ, Zhang YQ, Ai WB, Wu JF (2021) Relationship between the structure and function of the transcriptional regulator E2A. J Biol Res (Thessalon) 28:15. (PMID: 34271975)
Murre C, Mccaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB et al (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544. (PMID: 2503252)
Quong MW, Romanow WJ, Murre C (2002) E protein function in lymphocyte development. Annu Rev Immunol 20:301–322. (PMID: 11861605)
Sun XH, Baltimore D (1991) Correction: an inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 66:423. (PMID: 1868544)
Sun XH, Baltimore D (1991) An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64:459–470. (PMID: 1846322)
Bain G, Murre C (1998) The role of E-proteins in B- and T-lymphocyte development. Semin Immunol 10:143–153. (PMID: 9618760)
Kee BL, Quong MW, Murre C (2000) E2A proteins: essential regulators at multiple stages of B-cell development. Immunol Rev 175:138–149. (PMID: 10933599)
Bain G, Robanus Maandag EC, Te Riele HP, Feeney AJ, Sheehy A, Schlissel M, Shinton SA, Hardy RR, Murre C (1997) Both E12 and E47 allow commitment to the B cell lineage. Immunity 6:145–154. (PMID: 9047236)
Zhuang Y, Barndt RJ, Pan L, Kelley R, Dai M (1998) Functional replacement of the mouse E2A gene with a human HEB cDNA. Mol Cell Biol 18:3340–3349. (PMID: 9584174108915)
Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, Van Roon M et al (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892. (PMID: 8001125)
Semerad CL, Mercer EM, Inlay MA, Weissman IL, Murre C (2009) E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proc Natl Acad Sci U S A 106:1930–1935. (PMID: 191818462644141)
Dias S, Månsson R, Gurbuxani S, Sigvardsson M, Kee BL (2008) E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity 29:217–227. (PMID: 186749332600583)
Lin YC, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mansson R, Sigvardsson M, Hagman J, Espinoza CA, Dutkowski J et al (2010) A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol 11:635–643. (PMID: 205438372896911)
Kee BL, Murre C (1998) Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J Exp Med 188:699–713. (PMID: 97059522213347)
Ikawa T, Kawamoto H, Wright LY, Murre C (2004) Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity 20:349–360. (PMID: 15030778)
Seet CS, Brumbaugh RL, Kee BL (2004) Early b cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J Exp Med 199:1689–1700. (PMID: 152107452212815)
Schroeder HW Jr, Radbruch A, Berek C (2019) B-cell development and differentiation. Clinical immunology.
Ephrussi A, Church GM, Tonegawa S, Gilbert W (1985) B lineage–specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140. (PMID: 3917574)
Meyer KB, Skogberg M, Margenfeld C, Ireland J, Pettersson S (1995) Repression of the immunoglobulin heavy chain 3’ enhancer by helix-loop-helix protein Id3 via a functionally important E47/E12 binding site: implications for developmental control of enhancer function. Eur J Immunol 25:1770–1777. (PMID: 7615006)
O’riordan M, Grosschedl R (1999) Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11:21–31. (PMID: 10435576)
Choi JK, Shen CP, Radomska HS, Eckhardt LA, Kadesch T (1996) E47 activates the Ig-heavy chain and TdT loci in non-B cells. Embo j 15:5014–5021. (PMID: 8890174452239)
Greenbaum S, Zhuang Y (2002) Identification of E2A target genes in B lymphocyte development by using a gene tagging-based chromatin immunoprecipitation system. Proc Natl Acad Sci U S A 99:15030–15035. (PMID: 12415115137539)
Sigvardsson M, Clark DR, Fitzsimmons D, Doyle M, Akerblad P, Breslin T, Bilke S, Li R, Yeamans C, Zhang G et al (2002) Early B-cell factor, E2A, and Pax-5 cooperate to activate the early B cell-specific mb-1 promoter. Mol Cell Biol 22:8539–8551. (PMID: 12446773139876)
Sabbattini P, Dillon N (2005) The lambda5-VpreB1 locus–a model system for studying gene regulation during early B cell development. Semin Immunol 17:121–127. (PMID: 15737573)
Sakamoto S, Wakae K, Anzai Y, Murai K, Tamaki N, Miyazaki M, Miyazaki K, Romanow WJ, Ikawa T, Kitamura D et al (2012) E2A and CBP/p300 act in synergy to promote chromatin accessibility of the immunoglobulin κ locus. J Immunol 188:5547–5560. (PMID: 22544934)
Quong MW, Harris DP, Swain SL, Murre C (1999) E2A activity is induced during B-cell activation to promote immunoglobulin class switch recombination. Embo j 18:6307–6318. (PMID: 105625431171694)
Goldfarb AN, Flores JP, Lewandowska K (1996) Involvement of the E2A basic helix-loop-helix protein in immunoglobulin heavy chain class switching. Mol Immunol 33:947–956. (PMID: 8960119)
Schoetz U, Cervelli M, Wang YD, Fiedler P, Buerstedde JM (2006) E2A expression stimulates ig hypermutation. J Immunol 177:395–400. (PMID: 16785535)
Frasca D, Riley RL, Blomberg BB (2005) Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol 17:378–384. (PMID: 15996480)
Kamps MP, Murre C, Sun XH, Baltimore D (1990) A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60:547–555. (PMID: 1967983)
Asahara H, Dutta S, Kao HY, Evans RM, Montminy M (1999) Pbx-hox heterodimers recruit coactivator-corepressor complexes in an isoform-specific manner. Mol Cell Biol 19:8219–8225. (PMID: 1056754784906)
Holland PW, Booth HA, Bruford EA (2007) Classification and nomenclature of all human homeobox genes. BMC Biol 5:47. (PMID: 179634892211742)
Sengupta M, Liang S, Potula HH, Chang LJ, Morel L (2012) The SLE-associated Pbx1-d isoform acts as a dominant-negative transcriptional regulator. Genes Immun 13:653–657. (PMID: 229927213600587)
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S (2022) The TALE never ends: a comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 43:1125–1148. (PMID: 35451537)
Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F (2014) Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev Dyn 243:59–75. (PMID: 23873833)
Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wüthrich K (1994) Homeodomain-DNA recognition. Cell 78:211–223. (PMID: 8044836)
Blasi F, Bruckmann C, Penkov D, Dardaei L (2017) A tale of TALE, PREP1, PBX1, and MEIS1: interconnections and competition in cancer. BioEssays 39.
Dardaei L, Longobardi E, Blasi F (2014) Prep1 and Meis1 competition for Pbx1 binding regulates protein stability and tumorigenesis. Proc Natl Acad Sci U S A 111:E896–905. (PMID: 245785103956142)
Kilstrup-Nielsen C, Alessio M, Zappavigna V (2003) PBX1 nuclear export is regulated independently of PBX-MEINOX interaction by PKA phosphorylation of the PBC-B domain. Embo j 22:89–99. (PMID: 12505987140055)
Jacobs Y, Schnabel CA, Cleary ML (1999) Trimeric Association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol 19:5134–5142. (PMID: 1037356284356)
Berthelsen J, Kilstrup-Nielsen C, Blasi F, Mavilio F, Zappavigna V (1999) The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH. Genes Dev 13:946–953. (PMID: 10215622316640)
Saleh M, Huang H, Green NC, Featherstone MS (2000) A conformational change in PBX1A is necessary for its nuclear localization. Exp Cell Res 260:105–115. (PMID: 11010815)
Abu-Shaar M, Ryoo HD, Mann RS (1999) Control of the nuclear localization of extradenticle by competing nuclear import and export signals. Genes Dev 13:935–945. (PMID: 10215621316638)
Penkov D, Mateos San Martín D, Fernandez-Díaz LC, Rosselló CA, Torroja C, Sánchez-Cabo F, Warnatz HJ, Sultan M, Yaspo ML, Gabrieli A et al (2013) Analysis of the DNA-binding profile and function of TALE homeoproteins reveals their specialization and specific interactions with hox genes/proteins. Cell Rep 3:1321–1333. (PMID: 23602564)
Blasi F, Bruckmann C (2021) MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction can be used in Therapy. J Dev Biol 9.
Charboneau A, East L, Mulholland N, Rohde M, Boudreau N (2005) Pbx1 is required for hox D3-mediated angiogenesis. Angiogenesis 8:289–296. (PMID: 16328158)
Laronde-Leblanc NA, Wolberger C (2003) Structure of HoxA9 and Pbx1 bound to DNA: hox hexapeptide and DNA recognition anterior to posterior. Genes Dev 17:2060–2072. (PMID: 12923056196259)
Piper DE, Batchelor AH, Chang CP, Cleary ML, Wolberger C (1999) Structure of a HoxB1-Pbx1 heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96:587–597. (PMID: 10052460)
Dard A, Jia Y, Reboulet J, Bleicher F, Lavau C, Merabet S (2019) The human HOXA9 protein uses paralog-specific residues of the homeodomain to interact with TALE-class cofactors. Sci Rep 9:5664. (PMID: 309529006450960)
Pineault N, Helgason CD, Lawrence HJ, Humphries RK (2002) Differential expression of hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30:49–57. (PMID: 11823037)
Merabet S, Mann RS (2016) To be specific or not: the critical relationship between hox and TALE proteins. Trends Genet 32:334–347. (PMID: 270668664875764)
Dimartino JF, Selleri L, Traver D, Firpo MT, Rhee J, Warnke R, O’gorman S, Weissman IL, Cleary ML (2001) The hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood 98:618–626. (PMID: 11468159)
Malouf C, Ottersbach K (2018) Molecular processes involved in B cell acute lymphoblastic Leukaemia. Cell Mol Life Sci 75:417–446. (PMID: 28819864)
Kocabas F, Xie L, Xie J, Yu Z, Deberardinis RJ, Kimura W, Thet S, Elshamy AF, Abouellail H, Muralidhar S et al (2015) Hypoxic metabolism in human hematopoietic stem cells. Cell Biosci 5:39. (PMID: 262215324517642)
Sanyal M, Tung JW, Karsunky H, Zeng H, Selleri L, Weissman IL, Herzenberg LA, Cleary ML (2007) B-cell development fails in the absence of the Pbx1 proto-oncogene. Blood 109:4191–4199. (PMID: 172446771885499)
Van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, Gottardi E, Rambaldi A, Dotti G, Griesinger F et al (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute Leukemia for detection of minimal residual Disease. Report of the BIOMED-1 concerted action: investigation of minimal residual Disease in acute Leukemia. Leukemia 13:1901–1928. (PMID: 10602411)
Mellentin JD, Nourse J, Hunger SP, Smith SD, Cleary ML (1990) Molecular analysis of the t(1;19) breakpoint cluster region in pre-B cell acute lymphoblastic leukemias. Genes Chromosomes Cancer 2:239–247. (PMID: 2078515)
Hein D, Dreisig K, Metzler M, Izraeli S, Schmiegelow K, Borkhardt A, Fischer U (2019) The preleukemic TCF3-PBX1 gene fusion can be generated in utero and is present in ≈ 0.6% of healthy newborns. Blood 134:1355–1358. (PMID: 314347067005361)
Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT, Crouse V, Ma X, Buffler PA, Pine SR (2002) Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic Leukemia. Proc Natl Acad Sci U S A 99:15101–15106. (PMID: 12415113137550)
Kamps MP, Look AT, Baltimore D (1991) The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev 5:358–368. (PMID: 1672117)
Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML (1990) Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60:535–545. (PMID: 1967982)
Holmlund T, Lindberg MJ, Grander D, Wallberg AE (2013) GCN5 acetylates and regulates the stability of the oncoprotein E2A-PBX1 in acute lymphoblastic Leukemia. Leukemia 27:578–585. (PMID: 23044487)
Lin CH, Wang Z, Duque-Afonso J, Wong SH, Demeter J, Loktev AV, Somervaille TCP, Jackson PK, Cleary ML (2019) Oligomeric self-association contributes to E2A-PBX1-mediated oncogenesis. Sci Rep 9:4915. (PMID: 308946576426973)
Lu Q, Wright DD, Kamps MP (1994) Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol Cell Biol 14:3938–3948. (PMID: 7910944358760)
Lebrun DP, Cleary ML (1994) Fusion with E2A alters the transcriptional properties of the homeodomain protein PBX1 in t(1;19) leukemias. Oncogene 9:1641–1647. (PMID: 8183558)
Van Dijk MA, Voorhoeve PM, Murre C (1993) Pbx1 is converted into a transcriptional activator upon acquiring the N-terminal region of E2A in pre-B-cell acute lymphoblastoid Leukemia. Proc Natl Acad Sci U S A 90:6061–6065. (PMID: 832748546867)
Monica K, Lebrun DP, Dedera DA, Brown R, Cleary ML (1994) Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable. Mol Cell Biol 14:8304–8314. (PMID: 7969166359369)
Kamps MP (1997) E2A-Pbx1 induces growth, blocks differentiation, and interacts with other homeodomain proteins regulating normal differentiation. Curr Top Microbiol Immunol 220:25–43. (PMID: 9103673)
Sera Y, Yamasaki N, Oda H, Nagamachi A, Wolff L, Inukai T, Inaba T, Honda H (2016) Identification of cooperative genes for E2A-PBX1 to develop acute lymphoblastic Leukemia. Cancer Sci 107:890–898. (PMID: 270884314946715)
Mullighan CG (2012) The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2012: 389–396.
Duque-Afonso J, Feng J, Scherer F, Lin CH, Wong SH, Wang Z, Iwasaki M, Cleary ML (2015) Comparative genomics reveals multistep pathogenesis of E2A-PBX1 acute lymphoblastic Leukemia. J Clin Invest 125:3667–3680. (PMID: 263018164588292)
Bicocca VT, Chang BH, Masouleh BK, Muschen M, Loriaux MM, Druker BJ, Tyner JW (2012) Crosstalk between ROR1 and the Pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic Leukemia. Cancer Cell 22:656–667. (PMID: 231535383500515)
Geng H, Hurtz C, Lenz KB, Chen Z, Baumjohann D, Thompson S, Goloviznina NA, Chen WY, Huan J, Latocha D et al (2015) Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic Leukemia. Cancer Cell 27:409–425. (PMID: 257590254618684)
Geng H, Hurtz C, Chen Z, Chen W-Y, Ballabio E, Xiao G, Kweon S-m, Nahar R, Sojaee S, Chan LN et al (2013) Targeting Pre-B cell receptor and BCL6 in TCF3-PBX1 B-Lineage Acute Lymphoblastic Leukemia. Blood 122:349–349.
Duque-Afonso J, Lin CH, Han K, Wei MC, Feng J, Kurzer JH, Schneidawind C, Wong SH, Bassik MC, Cleary ML (2016) E2A-PBX1 remodels Oncogenic Signaling Networks in B-cell precursor Acute Lymphoid Leukemia. Cancer Res 76:6937–6949. (PMID: 277588925634812)
Hempel WM, Schatzman RC, Defranco AL (1992) Tyrosine phosphorylation of phospholipase C-gamma 2 upon cross-linking of membrane ig on murine B lymphocytes. J Immunol 148:3021–3027. (PMID: 1578127)
Alsadeq A, Fedders H, Vokuhl C, Belau NM, Zimmermann M, Wirbelauer T, Spielberg S, Vossen-Gajcy M, Cario G, Schrappe M et al (2017) The role of ZAP70 kinase in acute lymphoblastic Leukemia infiltration into the central nervous system. Haematologica 102:346–355. (PMID: 276863755286942)
Alsadeq A, Schewe DM (2017) Acute lymphoblastic Leukemia of the central nervous system: on the role of PBX1. Haematologica 102:611–613. (PMID: 283640575395101)
Wang L, Yajing C, Tao C, Weiping Y (2015) Advances in Leukemia inhibitors targeting PI3K/AKT/mTOR pathway. Chin J Hematol 36:888–893.
Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644. (PMID: 196444733142564)
Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10:868–880. (PMID: 22037041)
Smith KS, Chanda SK, Lingbeek M, Ross DT, Botstein D, Van Lohuizen M, Cleary ML (2003) Bmi-1 regulation of INK4A-ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a-Pbx1. Mol Cell 12:393–400. (PMID: 14536079)
Lin CH, Wong SH, Kurzer JH, Schneidawind C, Wei MC, Duque-Afonso J, Jeong J, Feng X, Cleary ML (2018) SETDB2 links E2A-PBX1 to cell-cycle dysregulation in Acute Leukemia through CDKN2C repression. Cell Rep 23:1166–1177. (PMID: 296948935963704)
Licht JD (2020) Oncogenesis by E2A-PBX1 in ALL: RUNX and more. Blood 136:3–4. (PMID: 32614960)
Pi WC, Wang J, Shimada M, Lin JW, Geng H, Lee YL, Lu R, Li D, Wang GG, Roeder RG et al (2020) E2A-PBX1 functions as a coactivator for RUNX1 in acute lymphoblastic Leukemia. Blood 136:11–23. (PMID: 322762737332894)
Lee YL, Ito K, Pi WC, Lin IH, Chu CS, Malik S, Cheng IH, Chen WY, Roeder RG (2021) Mediator subunit MED1 is required for E2A-PBX1-mediated oncogenic transcription and leukemic cell growth. Proc Natl Acad Sci U S A 118.
Hassawi M, Shestakova EA, Fournier M, Lebert-Ghali C, Vaisson G, Frison H, Sinnett D, Vidal R, Thompson A, Bijl JJ (2014) Hoxa9 collaborates with E2A-PBX1 in mouse B cell Leukemia in association with Flt3 activation and decrease of B cell gene expression. Dev Dyn 243:145–158. (PMID: 23996689)
Hyndman BD, Thompson P, Bayly R, Côté GP, Lebrun DP (2012) E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300. Biochim Biophys Acta 1819:446–453. (PMID: 22387215)
Denis CM, Langelaan DN, Kirlin AC, Chitayat S, Munro K, Spencer HL, Lebrun DP, Smith SP (2014) Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300. Nucleic Acids Res 42:7370–7382. (PMID: 246828194066744)
Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA et al (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic Leukemia. N Engl J Med 360:470–480. (PMID: 191295202674612)
Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic Leukaemia. Nature 446:758–764. (PMID: 17344859)
Familiades J, Bousquet M, Lafage-Pochitaloff M, Béné MC, Beldjord K, De Vos J, Dastugue N, Coyaud E, Struski S, Quelen C et al (2009) PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic Leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia 23:1989–1998. (PMID: 19587702)
Heltemes-Harris LM, Hubbard GK, Larue RS, Munro SA, Yang R, Henzler CM, Starr TK, Sarver AL, Kornblau SM, Farrar MA (2021) Identification of mutations that cooperate with defects in B cell transcription factors to initiate Leukemia. Oncogene 40:6166–6179. (PMID: 345357698556320)
Mega T, Lupia M, Amodio N, Horton SJ, Mesuraca M, Pelaggi D, Agosti V, Grieco M, Chiarella E, Spina R et al (2011) Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors. Cell Cycle 10:2129–2139. (PMID: 21593590)
Witkowski MT, Hu Y, Roberts KG, Boer JM, Mckenzie MD, Liu GJ, Le Grice OD, Tremblay CS, Ghisi M, Willson TA et al (2017) Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic Leukemia outcome. J Exp Med 214:773–791. (PMID: 281900005339666)
Hof J, Krentz S, Van Schewick C, Körner G, Shalapour S, Rhein P, Karawajew L, Ludwig WD, Seeger K, Henze G et al (2011) Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic Leukemia. J Clin Oncol 29:3185–3193. (PMID: 21747090)
Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, Chen SC, Payne-Turner D, Churchman ML, Harvey RC et al (2012) Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic Leukemia. Cancer Cell 22:153–166. (PMID: 228978473422513)
Sulong S, Moorman AV, Irving JA, Strefford JC, Konn ZJ, Case MC, Minto L, Barber KE, Parker H, Wright SL et al (2009) A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic Leukemia reveals genomic deletion, copy number Neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood 113:100–107. (PMID: 18838613)
Carrasco Salas P, Fernández L, Vela M, Bueno D, González B, Valentín J, Lapunzina P, Pérez-Martínez A (2016) The role of CDKN2A/B deletions in pediatric acute lymphoblastic Leukemia. Pediatr Hematol Oncol 33:415–422. (PMID: 27960642)
Agarwal M, Bakhshi S, Dwivedi SN, Kabra M, Shukla R, Seth R (2018) Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic Leukemia. Pediatr Blood Cancer 65:e27001. (PMID: 29446543)
Hartsink-Segers SA, Zwaan CM, Exalto C, Luijendijk MW, Calvert VS, Petricoin EF, Evans WE, Reinhardt D, De Haas V, Hedtjärn M et al (2013) Aurora kinases in childhood acute Leukemia: the promise of aurora B as therapeutic target. Leukemia 27:560–568. (PMID: 22940834)
Moreira-Nunes CA, Mesquita FP, Portilho AJS, Mello Júnior F A R, Maués J, Pantoja LDC, Wanderley AV, Khayat AS, Zuercher WJ, Montenegro RC et al (2020) Targeting aurora kinases as a potential prognostic and therapeutical biomarkers in pediatric acute lymphoblastic Leukaemia. Sci Rep 10:21272. (PMID: 332775477718893)
Messina M, Chiaretti S, Wang J, Fedullo AL, Peragine N, Gianfelici V, Piciocchi A, Brugnoletti F, Di Giacomo F, Pauselli S et al (2016) Prognostic and therapeutic role of targetable lesions in B-lineage acute lymphoblastic Leukemia without recurrent fusion genes. Oncotarget 7:13886–13901. (PMID: 268831044924686)
Ueno H, Yoshida K, Shiozawa Y, Nannya Y, Iijima-Yamashita Y, Kiyokawa N, Shiraishi Y, Chiba K, Tanaka H, Isobe T et al (2020) Landscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic Leukemia. Blood Adv 4:5165–5173. (PMID: 330958737594377)
Li JF, Dai YT, Lilljebjörn H, Shen SH, Cui BW, Bai L, Liu YF, Qian MX, Kubota Y, Kiyoi H et al (2018) Transcriptional landscape of B cell precursor acute lymphoblastic Leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A 115:E11711–e11720. (PMID: 304872236294900)
Gabriel AS, Lafta FM, Schwalbe EC, Nakjang S, Cockell SJ, Iliasova A, Enshaei A, Schwab C, Rand V, Clifford SC et al (2015) Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic Leukemia. Epigenetics 10:717–726. (PMID: 262370754622588)
Gutierrez MI, Siraj AK, Bhargava M, Ozbek U, Banavali S, Chaudhary MA, El Solh H, Bhatia K (2003) Concurrent methylation of multiple genes in childhood ALL: correlation with phenotype and molecular subgroup. Leukemia 17:1845–1850. (PMID: 12970785)
Organista-Nava J, Gómez-Gómez Y, Illades-Aguiar B, Leyva-Vázquez MA (2016) Regulation of the miRNA expression by TEL/AML1, BCR/ABL, MLL/AF4 and TCF3/PBX1 oncoproteins in acute lymphoblastic Leukemia (review). Oncol Rep 36:1226–1232. (PMID: 27431573)
Fernando TR, Rodriguez-Malave NI, Waters EV, Yan W, Casero D, Basso G, Pigazzi M, Rao DS (2015) LncRNA expression discriminates Karyotype and predicts survival in B-Lymphoblastic Leukemia. Mol Cancer Res 13:839–851. (PMID: 256815024433429)
Malard F, Mohty M (2020) Acute lymphoblastic Leukaemia. Lancet 395:1146–1162. (PMID: 32247396)
Pui CH, Howard SC (2008) Current management and challenges of malignant Disease in the CNS in paediatric Leukaemia. Lancet Oncol 9:257–268. (PMID: 18308251)
Richards S, Pui CH, Gayon P (2013) Systematic review and meta-analysis of randomized trials of central nervous system directed therapy for childhood acute lymphoblastic Leukemia. Pediatr Blood Cancer 60:185–195. (PMID: 22693038)
Lin A, Cheng FWT, Chiang AKS, Luk CW, Li RCH, Ling ASC, Cheuk DKL, Chang KO, Ku D, Lee V et al (2018) Excellent outcome of acute lymphoblastic Leukaemia with TCF3-PBX1 rearrangement in Hong Kong. Pediatr Blood Cancer 65:e27346. (PMID: 30051646)
Uckun FM, Qazi S, Dibirdik I, Myers DE (2013) Rational design of an immunoconjugate for selective knock-down of leukemia-specific E2A-PBX1 fusion gene expression in human Pre-B Leukemia. Integr Biol (Camb) 5:122–132. (PMID: 22990208)
Steinauer N, Guo C, Zhang J (2017) Emerging Roles of MTG16 in Cell-Fate Control of Hematopoietic Stem Cells and Cancer. Stem Cells Int. 2017: 6301385.
Casagrande G, Te Kronnie G, Basso G (2006) The effects of siRNA-mediated inhibition of E2A-PBX1 on EB-1 and Wnt16b expression in the 697 pre-B Leukemia cell line. Haematologica 91:765–771. (PMID: 16769578)
Shiozawa Y, Pedersen EA, Taichman RS (2010) GAS6/Mer axis regulates the homing and survival of the E2A/PBX1-positive B-cell precursor acute lymphoblastic Leukemia in the bone marrow niche. Exp Hematol 38:132–140. (PMID: 19922767)
Chiaretti S, Guarini A, De Propris MS, Tavolaro S, Intoppa S, Vitale A, Iacobelli S, Elia L, Ariola C, Ritz J et al (2006) ZAP-70 expression in acute lymphoblastic Leukemia: association with the E2A/PBX1 rearrangement and the pre-B stage of differentiation and prognostic implications. Blood 107:197–204. (PMID: 16160012)
Aït Ghezali L, Arbabian A, Roudot H, Brouland JP, Baran-Marszak F, Salvaris E, Boyd A, Drexler HG, Enyedi A, Letestu R et al (2017) Induction of endoplasmic reticulum calcium pump expression during early leukemic B cell differentiation. J Exp Clin Cancer Res 36:87. (PMID: 286516275485704)
Kager L, Cheok M, Yang W, Zaza G, Cheng Q, Panetta JC, Pui CH, Downing JR, Relling MV, Evans WE (2005) Folate pathway gene expression differs in subtypes of acute lymphoblastic Leukemia and influences methotrexate pharmacodynamics. J Clin Invest 115:110–117. (PMID: 15630450539195)
Grüninger PK, Uhl F, Herzog H, Gentile G, Andrade-Martinez M, Schmidt T, Han K, Morgens DW, Bassik MC, Cleary ML et al (2022) Functional characterization of the PI3K/AKT/MTOR signaling pathway for targeted therapy in B-precursor acute lymphoblastic Leukemia. Cancer Gene Ther 29:1751–1760. (PMID: 357943389663301)
Yuan N, Song L, Lin W, Cao Y, Xu F, Liu S, Zhang A, Wang Z, Li X, Fang Y et al (2015) Autophagy collaborates with ubiquitination to downregulate oncoprotein E2A/Pbx1 in B-cell acute lymphoblastic Leukemia. Blood Cancer J 5:e274. (PMID: 256152804314458)
Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207. (PMID: 29074454)
Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, Chen C, Pieters R, Den Boer ML (2011) MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic Leukemia. Haematologica 96:703–711. (PMID: 212421863084917)
Schotte D, Chau JC, Sylvester G, Liu G, Chen C, Van Der Velden VH, Broekhuis MJ, Peters TC, Pieters R, Den Boer ML (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic Leukemia. Leukemia 23:313–322. (PMID: 18923441)
Diakos C, Xiao Y, Zheng S, Kager L, Dworzak M, Wiemels JL (2014) Direct and indirect targets of the E2A-PBX1 leukemia-specific fusion protein. PLoS ONE 9:e87602. (PMID: 245038103913655)
Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, Ansell S, Du X, Hope MJ, Madden TD et al (2019) The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based Drugs. Nat Nanotechnol 14:1084–1087. (PMID: 31802031)
Ling F, Kang B, Sun XH (2014) Id proteins: small molecules, mighty regulators. Curr Top Dev Biol 110:189–216. (PMID: 25248477)
Ding Y, Zhou L, Xia Y, Wang W, Wang Y, Li L, Qi Z, Zhong L, Sun J, Tang W et al (2018) Reference values for peripheral blood lymphocyte subsets of healthy children in China. J Allergy Clin Immunol 142:970–973e978. (PMID: 29746882)
Jensen K, Brusletto BS, Aass HC, Olstad OK, Kierulf P, Gautvik KM (2013) Transcriptional profiling of mRNAs and microRNAs in human bone marrow precursor B cells identifies subset- and age-specific variations. PLoS ONE 8:e70721. (PMID: 239362433728296)
Favé MJ, Lamaze FC, Soave D, Hodgkinson A, Gauvin H, Bruat V, Grenier JC, Gbeha E, Skead K, Smargiassi A et al (2018) Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat Commun 9:827. (PMID: 295111665840419)
Li Z, Seehawer M, Polyak K (2022) Untangling the web of intratumour heterogeneity. Nat Cell Biol 24:1192–1201. (PMID: 35941364)
Gavish A, Tyler M, Greenwald AC, Hoefflin R, Simkin D, Tschernichovsky R, Galili Darnell N, Somech E, Barbolin C, Antman T et al (2023) Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618:598–606. (PMID: 37258682)
O’connor D, Enshaei A, Bartram J, Hancock J, Harrison CJ, Hough R, Samarasinghe S, Schwab C, Vora A, Wade R et al (2018) Genotype-specific minimal residual Disease interpretation improves stratification in Pediatric Acute Lymphoblastic Leukemia. J Clin Oncol 36:34–43. (PMID: 29131699)
معلومات مُعتمدة: 2023M732926 Postdoctoral Research Foundation of China
فهرسة مساهمة: Keywords: B-ALL; B-cell differentiation; E2A; E2A-PBX1; PBX1
المشرفين على المادة: 0 (Oncogene Proteins, Fusion)
146150-85-8 (E2A-Pbx1 fusion protein)
0 (Pre-B-Cell Leukemia Transcription Factor 1)
0 (Homeodomain Proteins)
تواريخ الأحداث: Date Created: 20231226 Date Completed: 20240828 Latest Revision: 20240829
رمز التحديث: 20240830
DOI: 10.1007/s00277-023-05595-7
PMID: 38148344
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0584
DOI:10.1007/s00277-023-05595-7