دورية أكاديمية

Metastatic potentials classified with hypoxia-inducible factor 1 downstream genes in pan-cancer cell lines.

التفاصيل البيبلوغرافية
العنوان: Metastatic potentials classified with hypoxia-inducible factor 1 downstream genes in pan-cancer cell lines.
المؤلفون: Nakamichi K; Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan., Yamamoto Y; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan., Semba K; Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.; Translational Research Center, Fukushima Medical University, Fukushima, Japan., Nakayama J; Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.; Department of Oncogenesis and growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan.
المصدر: Genes to cells : devoted to molecular & cellular mechanisms [Genes Cells] 2024 Feb; Vol. 29 (2), pp. 169-177. Date of Electronic Publication: 2023 Dec 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Ltd Country of Publication: England NLM ID: 9607379 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2443 (Electronic) Linking ISSN: 13569597 NLM ISO Abbreviation: Genes Cells Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Science Ltd., 1996-
مواضيع طبية MeSH: Hypoxia-Inducible Factor 1*/genetics , Hypoxia-Inducible Factor 1*/metabolism , Breast Neoplasms*/pathology, Humans ; Female ; Cell Line ; Hypoxia-Inducible Factor 1, alpha Subunit/genetics ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Cell Line, Tumor ; Cell Hypoxia/physiology
مستخلص: Hypoxia-inducible factor 1 (HIF1) is a transcription factor that is stabilized under hypoxia conditions via post-translational modifications. HIF1 regulates tumor malignancy and metastasis by gene transcriptions, such as Warburg effect and angiogenesis-related genes, in cancer cells. However, the HIF1 downstream genes show varied expressional patterns in different cancer types. Herein, we performed the hierarchical clustering based on the HIF1 downstream gene expression patterns using 1406 cancer cell lines crossing 30 types of cancer to understand the relationship between HIF1 downstream genes and the metastatic potential of cancer cell lines. Two types of cancers, including bone and breast cancers, were classified based on HIF1 downstream genes with significantly altered metastatic potentials. Furthermore, different HIF1 downstream gene subsets were extracted to discriminate each subtype for these cancer types. HIF1 downstream subtyping classification will help to understand the novel insight into tumor malignancy and metastasis in each cancer type.
(© 2023 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.)
References: Adler, D., Kelly, S. T., Elliott, T., & Adamson, J. (2022). Vioplot: Violin plot. R package version 0.4.0. https://github.com/TomKellyGenetics/vioplot.
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson C. J., Lehár, J., Kryukov, G. V., Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M. F., Monahan, J. E., Morais, P., Meltzer, J., Korejwa, A., Jané-Valbuena, J., … Garraway, L. A. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483(7391), 603-607. https://doi.org/10.1038/nature11003.
Cantiani, L., Manara, M. C., Zucchini, C., De Sanctis, P., Zuntini, M., Valvassori, L., Serra, M., Olivero, M., Di Renzo, M. F., Colombo, M. P., Picci, P., & Scotlandi, K. (2007). Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Research, 67(16), 7675-7685. https://doi.org/10.1158/0008-5472.CAN-06-4697.
Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401-404. https://doi.org/10.1158/2159-8290.CD-12-0095.
de Bruijn, I., Kundra, R., Mastrogiacomo, B., Tran, T. N., Sikina, L., Mazor, T., Li, X., Ochoa, A., Zhao, G., Lai, B., Abeshouse, A., Baiceanu, D., Ciftci, E., Dogrusoz, U., Dufilie, A., Erkoc, Z., Garcia Lara, E., Fu, Z., Gross, B., Haynes, C., … Schultz, N. (2023). Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Research, 83, 3861-3867. https://doi.org/10.1158/0008-5472.CAN-23-0816.
Diaz-Valdivia, N., Bravo, D., Huerta, H., Henriquez, S., Gabler, F., Vega, M., Romero, C., Calderon, C., Owen, G. I., Leyton, L., & Quest, A. F. (2015). Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells. BMC Cancer, 15, 1-11. https://doi.org/10.1186/s12885-015-1477-5.
Ebert, B. L., Firth, J. D., & Ratcliffe, P. J. (1995). Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. Journal of Biological Chemistry, 270(49), 29083-29089. https://doi.org/10.1074/jbc.270.49.29083.
Elvidge, G. P., Glenny, L., Appelhoff, R. J., Ratcliffe, P. J., Ragoussis, J., & Gleadle, J. M. (2006). Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: The role of HIF-1α, HIF-2α, and other pathways. Journal of Biological Chemistry, 281(22), 15215-15226. https://doi.org/10.1074/jbc.M511408200.
Fluegen, G., Avivar-Valderas, A., Wang, Y., Padgen, M. R., Williams, J. K., Nobre, A. R., Calvo, V., Cheung, J. F., Bravo-Cordero, J. J., Entenberg, D., Castracane, J., Verkhusha, V., Kelly, P. J., Condeelis, J., & Aguirre-Ghiso, J. A. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 19(2), 120-132. https://doi.org/10.1038/ncb3465.
Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., & Semenza, G. L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604-4613. https://doi.org/10.1128/MCB.16.9.4604.
Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1. https://doi.org/10.1126/scisignal.2004088.
Gelmini, S., Mangoni, M., Castiglione, F., Beltrami, C., Pieralli, A., Andersson, K. L., Fambrini, M., Taddei, G. L., Serio, M., & Orlando, C. (2009). The CXCR4/CXCL12 axis in endometrial cancer. Clinical and Experimental Metastasis, 26(3), 261-268. https://doi.org/10.1007/s10585-009-9240-4.
Guan, G., Zhang, Y., Lu, Y., Liu, L., Shi, D., Wen, Y., Yang, L., Ma, Q., Liu, T., Zhu, X., Qiu, X., & Zhou, Y. (2015). The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells. Cancer Letters, 357(1), 254-264. https://doi.org/10.1016/j.canlet.2014.11.034.
Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., … Laird, P. W. (2018). Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell, 173(2), 291-304.e6. https://doi.org/10.1016/j.cell.2018.03.022.
Infantino, V., Santarsiero, A., Convertini, P., Todisco, S., & Iacobazzi, V. (2021). Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. International Journal of Molecular Sciences, 22(11), 5703. https://doi.org/10.3390/ijms22115703.
Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., & Kaelin, W. G., Jr. (2001). HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292(5516), 464-468. https://doi.org/10.1126/science.1059817.
Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., & Ratcliffe, P. J. (2001). Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468-472. https://doi.org/10.1126/SCIENCE.1059796.
Jin, X., Demere, Z., Nair, K., Ali, A., Ferraro, G. B., Natoli, T., Deik, A., Petronio, L., Tang, A. A., Zhu, C., Wang, L., Rosenberg, D., Mangena, V., Roth, J., Chung, K., Jain, R. K., Clish, C. B., Vander Heiden, M. G. & Golub, T. R. (2020). A metastasis map of human cancer cell lines. Nature, 588(7837), 331-336. https://doi.org/10.1038/s41586-020-2969-2.
Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., & Shu, Y. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Molecular Cancer, 18(1), 157. https://doi.org/10.1186/s12943-019-1089-9.
Kaluz, S., Kaluzová, M., & Stanbridge, E. J. (2008). Rational design of minimal hypoxia-inducible enhancers. Biochemical and Biophysical Research Communications, 370(4), 613-618. https://doi.org/10.1016/j.bbrc.2008.03.147.
Kolde, R. (2019). Pheatmap: Pretty heatmaps. R package version 1.0.12. https://cran.r-project.org/package=pheatmap.
Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C., & Semenza, G. L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21(12), 3995-4004. https://doi.org/10.1128/MCB.21.12.3995-4004.2001.
Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., & Shim, H. (2005). Silencing of CXCR4 blocks breast cancer metastasis. Cancer Research, 65(3), 967-971. https://doi.org/10.1158/0008-5472.967.65.3.
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739-1740. https://doi.org/10.1093/BIOINFORMATICS/BTR260.
Loboda, A., Jozkowicz, A., & Dulak, J. (2012). HIF-1 versus HIF-2-Is one more important than the other? Vascular Pharmacology, 56(5-6), 245-251. https://doi.org/10.1016/j.vph.2012.02.006.
Lu, T., Zhang, Z., Pan, X., Zhang, J., Wang, X., Wang, M., Li, H., Yan, M., & Chen, W. (2022). Caveolin-1 promotes cancer progression via inhibiting ferroptosis in head and neck squamous cell carcinoma. Journal of Oral Pathology and Medicine, 51(1), 52-62. https://doi.org/10.1111/jop.13267.
Luo, D., Wang, J., Li, J., & Post, M. (2011). Mouse snail is a target gene for HIFHypoxia. Molecular Cancer Research, 9(2), 234-245. https://doi.org/10.1158/1541-7786.MCR-10-0214.
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/.
Sáinz-Jaspeado, M., Lagares-Tena, L., Lasheras, J., Navid, F., Rodriguez-Galindo, C., Mateo-Lozano, S., Notario, V., Sanjuan, X., Garcia Del Muro, X., Fabra A., & Tirado, O. M. (2010). Caveolin-1 modulates the ability of Ewing's sarcoma to metastasize. Molecular Cancer Research, 8(11), 1489-1500. https://doi.org/10.1158/1541-7786.MCR-10-0060.
Saito, S., Lin, Y. C., Tsai, M. H., Lin, C. S., Murayama, Y., Sato, R., & Yokoyama, K. K. (2015). Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells. Kaohsiung Journal of Medical Sciences, 31(6), 279-286. https://doi.org/10.1016/j.kjms.2015.03.002.
Samara, G. J., Lawrence, D. M., Chiarelli, C. J., Valentino, M. D., Lyubsky, S., Zucker, S., & Vaday, G. G. (2004). CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Letters, 214(2), 231-241. https://doi.org/10.1016/j.canlet.2004.04.035.
Schietke, R., Warnecke, C., Wacker, I., Schödel, J., Mole, D. R., Campean, V., Amann, K., Goppelt-Struebe, M., Behrens, J., Eckardt, K. U., & Wiesener, M. S. (2010). The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: Insights into cellular transformation processes mediated by HIF-1. Journal of Biological Chemistry, 285(9), 6658-6669. https://doi.org/10.1074/jbc.M109.042424.
Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35(2), 71-103. https://doi.org/10.1080/10409230091169186.
Semenza, G. L. (2001). Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine, 7(8), 345-350. https://doi.org/10.1016/S1471-4914(01)02090-1.
Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., & Giallongo, A. (1996). Hypoxia response elements in the aldolase a, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry, 271(51), 32529-32537. https://doi.org/10.1074/jbc.271.51.32529.
Sloan, E. K., Stanley, K. L., & Anderson, R. L. (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene, 23(47), 7893-7897. https://doi.org/10.1038/sj.onc.1208062.
Yang, J., AlTahan, A., Jones, D. T., Buffa, F. M., Bridges, E., Interiano, R. B., Qu, C., Vogt, N., Li, J. L., Baban, D., Ragoussis, J., Nicholson, R., Davidoff, A. M., & Harris, A. L. (2015). Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 112(49), 15172-15177. https://doi.org/10.1073/pnas.1422015112.
Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., Teng, S. C., & Wu, K. J. (2008). Direct regulation of TWIST by HIF-1α promotes metastasis. Nature Cell Biology, 10(3), 295-305. https://doi.org/10.1038/ncb1691.
Zhang, W., Shi, X., Peng, Y., Wu, M., Zhang, P., Xie, R., Wu, Y., Yan, Q., Liu, S., & Wang, J. (2015). HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS One, 10(6), e0129603. https://doi.org/10.1371/journal.pone.0129603.
معلومات مُعتمدة: Fukushima Prefecture; JP21K15562 Japan Society for the Promotion of Science; JP23K06665 Japan Society for the Promotion of Science
فهرسة مساهمة: Keywords: HIF1; cancer cell line; hierarchical clustering; metastatic potential
المشرفين على المادة: 0 (Hypoxia-Inducible Factor 1)
0 (Hypoxia-Inducible Factor 1, alpha Subunit)
تواريخ الأحداث: Date Created: 20231230 Date Completed: 20240206 Latest Revision: 20240206
رمز التحديث: 20240206
DOI: 10.1111/gtc.13092
PMID: 38158708
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2443
DOI:10.1111/gtc.13092